Abstract:We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing LLM agents on AI research tasks. This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents. MLGym-bench consists of 13 diverse and open-ended AI research tasks from diverse domains such as computer vision, natural language processing, reinforcement learning, and game theory. Solving these tasks requires real-world AI research skills such as generating new ideas and hypotheses, creating and processing data, implementing ML methods, training models, running experiments, analyzing the results, and iterating through this process to improve on a given task. We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro. Our MLGym framework makes it easy to add new tasks, integrate and evaluate models or agents, generate synthetic data at scale, as well as develop new learning algorithms for training agents on AI research tasks. We find that current frontier models can improve on the given baselines, usually by finding better hyperparameters, but do not generate novel hypotheses, algorithms, architectures, or substantial improvements. We open-source our framework and benchmark to facilitate future research in advancing the AI research capabilities of LLM agents.
Abstract:Deep generative models have shown great promise when it comes to synthesising novel images. While they can generate images that look convincing on a higher-level, generating fine-grained details is still a challenge. In order to foster research on more powerful generative approaches, this paper proposes a novel task: generative modelling of 2D tree skeletons. Trees are an interesting shape class because they exhibit complexity and variations that are well-suited to measure the ability of a generative model to generated detailed structures. We propose a new dataset for this task and demonstrate that state-of-the-art generative models fail to synthesise realistic images on our benchmark, even though they perform well on current datasets like MNIST digits. Motivated by these results, we propose a novel network architecture based on combining a variational autoencoder using Recurrent Neural Networks and a convolutional discriminator. The network, error metrics and training procedure are adapted to the task of fine-grained sketching. Through quantitative and perceptual experiments, we show that our model outperforms previous work and that our dataset is a valuable benchmark for generative models. We will make our dataset publicly available.