Abstract:In recent years, training data attribution (TDA) methods have emerged as a promising direction for the interpretability of neural networks. While research around TDA is thriving, limited effort has been dedicated to the evaluation of attributions. Similar to the development of evaluation metrics for traditional feature attribution approaches, several standalone metrics have been proposed to evaluate the quality of TDA methods across various contexts. However, the lack of a unified framework that allows for systematic comparison limits trust in TDA methods and stunts their widespread adoption. To address this research gap, we introduce Quanda, a Python toolkit designed to facilitate the evaluation of TDA methods. Beyond offering a comprehensive set of evaluation metrics, Quanda provides a uniform interface for seamless integration with existing TDA implementations across different repositories, thus enabling systematic benchmarking. The toolkit is user-friendly, thoroughly tested, well-documented, and available as an open-source library on PyPi and under https://github.com/dilyabareeva/quanda.
Abstract:In the realm of dermatological diagnoses, where the analysis of dermatoscopic and microscopic skin lesion images is pivotal for the accurate and early detection of various medical conditions, the costs associated with creating diverse and high-quality annotated datasets have hampered the accuracy and generalizability of machine learning models. We propose an innovative unsupervised augmentation solution that harnesses Generative Adversarial Network (GAN) based models and associated techniques over their latent space to generate controlled semiautomatically-discovered semantic variations in dermatoscopic images. We created synthetic images to incorporate the semantic variations and augmented the training data with these images. With this approach, we were able to increase the performance of machine learning models and set a new benchmark amongst non-ensemble based models in skin lesion classification on the HAM10000 dataset; and used the observed analytics and generated models for detailed studies on model explainability, affirming the effectiveness of our solution.
Abstract:Local data attribution (or influence estimation) techniques aim at estimating the impact that individual data points seen during training have on particular predictions of an already trained Machine Learning model during test time. Previous methods either do not perform well consistently across different evaluation criteria from literature, are characterized by a high computational demand, or suffer from both. In this work we present DualView, a novel method for post-hoc data attribution based on surrogate modelling, demonstrating both high computational efficiency, as well as good evaluation results. With a focus on neural networks, we evaluate our proposed technique using suitable quantitative evaluation strategies from the literature against related principal local data attribution methods. We find that DualView requires considerably lower computational resources than other methods, while demonstrating comparable performance to competing approaches across evaluation metrics. Futhermore, our proposed method produces sparse explanations, where sparseness can be tuned via a hyperparameter. Finally, we showcase that with DualView, we can now render explanations from local data attributions compatible with established local feature attribution methods: For each prediction on (test) data points explained in terms of impactful samples from the training set, we are able to compute and visualize how the prediction on (test) sample relates to each influential training sample in terms of features recognized and by the model. We provide an Open Source implementation of DualView online, together with implementations for all other local data attribution methods we compare against, as well as the metrics reported here, for full reproducibility.
Abstract:Explainable AI (XAI) is slowly becoming a key component for many AI applications. Rule-based and modified backpropagation XAI approaches however often face challenges when being applied to modern model architectures including innovative layer building blocks, which is caused by two reasons. Firstly, the high flexibility of rule-based XAI methods leads to numerous potential parameterizations. Secondly, many XAI methods break the implementation-invariance axiom because they struggle with certain model components, e.g., BatchNorm layers. The latter can be addressed with model canonization, which is the process of re-structuring the model to disregard problematic components without changing the underlying function. While model canonization is straightforward for simple architectures (e.g., VGG, ResNet), it can be challenging for more complex and highly interconnected models (e.g., DenseNet). Moreover, there is only little quantifiable evidence that model canonization is beneficial for XAI. In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures,including VGG, ResNet, EfficientNet, DenseNets, as well as Relation Networks. We further suggest a XAI evaluation framework with which we quantify and compare the effect sof model canonization for various XAI methods in image classification tasks on the Pascal-VOC and ILSVRC2017 datasets, as well as for Visual Question Answering using CLEVR-XAI. Moreover, addressing the former issue outlined above, we demonstrate how our evaluation framework can be applied to perform hyperparameter search for XAI methods to optimize the quality of explanations.