Abstract:Despite Generative AI (GenAI) systems' potential for enhancing content creation, users often struggle to effectively integrate GenAI into their creative workflows. Core challenges include misalignment of AI-generated content with user intentions (intent elicitation and alignment), user uncertainty around how to best communicate their intents to the AI system (prompt formulation), and insufficient flexibility of AI systems to support diverse creative workflows (workflow flexibility). Motivated by these challenges, we created IntentTagger: a system for slide creation based on the notion of Intent Tags - small, atomic conceptual units that encapsulate user intent - for exploring granular and non-linear micro-prompting interactions for Human-GenAI co-creation workflows. Our user study with 12 participants provides insights into the value of flexibly expressing intent across varying levels of ambiguity, meta-intent elicitation, and the benefits and challenges of intent tag-driven workflows. We conclude by discussing the broader implications of our findings and design considerations for GenAI-supported content creation workflows.
Abstract:Chat-based prompts respond with verbose linear-sequential texts, making it difficult to explore and refine ambiguous intents, back up and reinterpret, or shift directions in creative AI-assisted design work. AI-Instruments instead embody "prompts" as interface objects via three key principles: (1) Reification of user-intent as reusable direct-manipulation instruments; (2) Reflection of multiple interpretations of ambiguous user-intents (Reflection-in-intent) as well as the range of AI-model responses (Reflection-in-response) to inform design "moves" towards a desired result; and (3) Grounding to instantiate an instrument from an example, result, or extrapolation directly from another instrument. Further, AI-Instruments leverage LLM's to suggest, vary, and refine new instruments, enabling a system that goes beyond hard-coded functionality by generating its own instrumental controls from content. We demonstrate four technology probes, applied to image generation, and qualitative insights from twelve participants, showing how AI-Instruments address challenges of intent formulation, steering via direct manipulation, and non-linear iterative workflows to reflect and resolve ambiguous intents.
Abstract:AI-based design tools are proliferating in professional software to assist engineering and industrial designers in complex manufacturing and design tasks. These tools take on more agentic roles than traditional computer-aided design tools and are often portrayed as "co-creators." Yet, working effectively with such systems requires different skills than working with complex CAD tools alone. To date, we know little about how engineering designers learn to work with AI-based design tools. In this study, we observed trained designers as they learned to work with two AI-based tools on a realistic design task. We find that designers face many challenges in learning to effectively co-create with current systems, including challenges in understanding and adjusting AI outputs and in communicating their design goals. Based on our findings, we highlight several design opportunities to better support designer-AI co-creation.
Abstract:Generative, ML-driven interactive systems have the potential to change how people interact with computers in creative processes - turning tools into co-creators. However, it is still unclear how we might achieve effective human-AI collaboration in open-ended task domains. There are several known challenges around communication in the interaction with ML-driven systems. An overlooked aspect in the design of co-creative systems is how users can be better supported in learning to collaborate with such systems. Here we reframe human-AI collaboration as a learning problem: Inspired by research on team learning, we hypothesize that similar learning strategies that apply to human-human teams might also increase the collaboration effectiveness and quality of humans working with co-creative generative systems. In this position paper, we aim to promote team learning as a lens for designing more effective co-creative human-AI collaboration and emphasize collaboration process quality as a goal for co-creative systems. Furthermore, we outline a preliminary schematic framework for embedding team learning support in co-creative AI systems. We conclude by proposing a research agenda and posing open questions for further study on supporting people in learning to collaborate with generative AI systems.