Abstract:Space debris is a major problem in space exploration. International bodies continuously monitor a large database of orbiting objects and emit warnings in the form of conjunction data messages. An important question for satellite operators is to estimate when fresh information will arrive so that they can react timely but sparingly with satellite maneuvers. We propose a statistical learning model of the message arrival process, allowing us to answer two important questions: (1) Will there be any new message in the next specified time interval? (2) When exactly and with what uncertainty will the next message arrive? The average prediction error for question (2) of our Bayesian Poisson process model is smaller than the baseline in more than 4 hours in a test set of 50k close encounter events.
Abstract:Since the late '50s, when the first artificial satellite was launched, the number of resident space objects (RSOs) has steadily increased. It is estimated that around 1 Million objects larger than 1 cm are currently orbiting the Earth, with only 30,000, larger than 10 cm, presently being tracked. To avert a chain reaction of collisions, termed Kessler Syndrome, it is indispensable to accurately track and predict space debris and satellites' orbit alike. Current physics-based methods have errors in the order of kilometres for 7 days predictions, which is insufficient when considering space debris that have mostly less than 1 meter. Typically, this failure is due to uncertainty around the state of the space object at the beginning of the trajectory, forecasting errors in environmental conditions such as atmospheric drag, as well as specific unknown characteristics such as mass or geometry of the RSO. Leveraging data-driven techniques, namely machine learning, the orbit prediction accuracy can be enhanced: by deriving unmeasured objects' characteristics, improving non-conservative forces' effects, and by the superior abstraction capacity that Deep Learning models have of modelling highly complex non-linear systems. In this survey, we provide an overview of the current work being done in this field.
Abstract:Space debris is a major problem in space exploration. International bodies continuously monitor a large database of orbiting objects and emit warnings in the form of conjunction data messages. An important question for satellite operators is to estimate when fresh information will arrive so that they can react timely but sparingly with satellite maneuvers. We propose a statistical learning model of the message arrival process, allowing us to answer two important questions: (1) Will there be any new message in the next specified time interval? (2) When exactly and with what uncertainty will the next message arrive? The average prediction error for question (2) of our Bayesian Poisson process model is smaller than the baseline in more than 3 hours in a test set of 50k close encounter events.