Abstract:Recent advances in Retrieval-Augmented Generation (RAG) systems have popularized semantic chunking, which aims to improve retrieval performance by dividing documents into semantically coherent segments. Despite its growing adoption, the actual benefits over simpler fixed-size chunking, where documents are split into consecutive, fixed-size segments, remain unclear. This study systematically evaluates the effectiveness of semantic chunking using three common retrieval-related tasks: document retrieval, evidence retrieval, and retrieval-based answer generation. The results show that the computational costs associated with semantic chunking are not justified by consistent performance gains. These findings challenge the previous assumptions about semantic chunking and highlight the need for more efficient chunking strategies in RAG systems.
Abstract:Product reviews, in the form of texts dominantly, significantly help consumers finalize their purchasing decisions. Thus, it is important for e-commerce companies to predict review helpfulness to present and recommend reviews in a more informative manner. In this work, we introduce a convolutional neural network model that is able to extract abstract features from multi-granularity representations. Inspired by the fact that different words contribute to the meaning of a sentence differently, we consider to learn word-level embedding-gates for all the representations. Furthermore, as it is common that some product domains/categories have rich user reviews, other domains not. To help domains with less sufficient data, we integrate our model into a cross-domain relationship learning framework for effectively transferring knowledge from other domains. Extensive experiments show that our model yields better performance than the existing methods.