Abstract:Chronic obstructive pulmonary disease (COPD) is a serious inflammatory lung disease affecting millions of people around the world. Due to an obstructed airflow from the lungs, it also becomes manifest in patients' vocal behaviour. Of particular importance is the detection of an exacerbation episode, which marks an acute phase and often requires hospitalisation and treatment. Previous work has shown that it is possible to distinguish between a pre- and a post-treatment state using automatic analysis of read speech. In this contribution, we examine whether sustained vowels can provide a complementary lens for telling apart these two states. Using a cohort of 50 patients, we show that the inclusion of sustained vowels can improve performance to up to 79\% unweighted average recall, from a 71\% baseline using read speech. We further identify and interpret the most important acoustic features that characterise the manifestation of COPD in sustained vowels.
Abstract:Advanced representation learning techniques require reliable and general evaluation methods. Recently, several algorithms based on the common idea of geometric and topological analysis of a manifold approximated from the learned data representations have been proposed. In this work, we introduce Delaunay Component Analysis (DCA) - an evaluation algorithm which approximates the data manifold using a more suitable neighbourhood graph called Delaunay graph. This provides a reliable manifold estimation even for challenging geometric arrangements of representations such as clusters with varying shape and density as well as outliers, which is where existing methods often fail. Furthermore, we exploit the nature of Delaunay graphs and introduce a framework for assessing the quality of individual novel data representations. We experimentally validate the proposed DCA method on representations obtained from neural networks trained with contrastive objective, supervised and generative models, and demonstrate various use cases of our extended single point evaluation framework.