Abstract:Existing model evaluation tools mainly focus on evaluating classification models, leaving a gap in evaluating more complex models, such as object detection. In this paper, we develop an open-source visual analysis tool, Uni-Evaluator, to support a unified model evaluation for classification, object detection, and instance segmentation in computer vision. The key idea behind our method is to formulate both discrete and continuous predictions in different tasks as unified probability distributions. Based on these distributions, we develop 1) a matrix-based visualization to provide an overview of model performance; 2) a table visualization to identify the problematic data subsets where the model performs poorly; 3) a grid visualization to display the samples of interest. These visualizations work together to facilitate the model evaluation from a global overview to individual samples. Two case studies demonstrate the effectiveness of Uni-Evaluator in evaluating model performance and making informed improvements.
Abstract:Recent advances in artificial intelligence largely benefit from better neural network architectures. These architectures are a product of a costly process of trial-and-error. To ease this process, we develop ArchExplorer, a visual analysis method for understanding a neural architecture space and summarizing design principles. The key idea behind our method is to make the architecture space explainable by exploiting structural distances between architectures. We formulate the pairwise distance calculation as solving an all-pairs shortest path problem. To improve efficiency, we decompose this problem into a set of single-source shortest path problems. The time complexity is reduced from O(kn^2N) to O(knN). Architectures are hierarchically clustered according to the distances between them. A circle-packing-based architecture visualization has been developed to convey both the global relationships between clusters and local neighborhoods of the architectures in each cluster. Two case studies and a post-analysis are presented to demonstrate the effectiveness of ArchExplorer in summarizing design principles and selecting better-performing architectures.