Abstract:Our ability to exploit low-cost wearable sensing modalities for critical human behaviour and activity monitoring applications in health and wellness is reliant on supervised learning regimes; here, deep learning paradigms have proven extremely successful in learning activity representations from annotated data. However, the costly work of gathering and annotating sensory activity datasets is labor-intensive, time consuming and not scalable to large volumes of data. While existing unsupervised remedies of deep clustering leverage network architectures and optimization objectives that are tailored for static image datasets, deep architectures to uncover cluster structures from raw sequence data captured by on-body sensors remains largely unexplored. In this paper, we develop an unsupervised end-to-end learning strategy for the fundamental problem of human activity recognition (HAR) from wearables. Through extensive experiments, including comparisons with existing methods, we show the effectiveness of our approach to jointly learn unsupervised representations for sensory data and generate cluster assignments with strong semantic correspondence to distinct human activities.
Abstract:Meta-training has been empirically demonstrated to be the most effective pre-training method for few-shot learning of medical image classifiers (i.e., classifiers modeled with small training sets). However, the effectiveness of meta-training relies on the availability of a reasonable number of hand-designed classification tasks, which are costly to obtain, and consequently rarely available. In this paper, we propose a new method to unsupervisedly design a large number of classification tasks to meta-train medical image classifiers. We evaluate our method on a breast dynamically contrast enhanced magnetic resonance imaging (DCE-MRI) data set that has been used to benchmark few-shot training methods of medical image classifiers. Our results show that the proposed unsupervised task design to meta-train medical image classifiers builds a pre-trained model that, after fine-tuning, produces better classification results than other unsupervised and supervised pre-training methods, and competitive results with respect to meta-training that relies on hand-designed classification tasks.