Abstract:In contemporary control theory, self-adaptive methodologies are highly esteemed for their inherent flexibility and robustness in managing modeling uncertainties. Particularly, robust adaptive control stands out owing to its potent capability of leveraging robust optimization algorithms to approximate cost functions and relax the stringent constraints often associated with conventional self-adaptive control paradigms. Deep learning methods, characterized by their extensive layered architecture, offer significantly enhanced approximation prowess. Notwithstanding, the implementation of deep learning is replete with challenges, particularly the phenomena of vanishing and exploding gradients encountered during the training process. This paper introduces a self-adaptive control scheme integrating a deep MPC, governed by an innovative weight update law designed to mitigate the vanishing and exploding gradient predicament by employing the gradient sign exclusively. The proffered controller is a self-adaptive dynamic inversion mechanism, integrating an augmented state observer within an auxiliary estimation circuit to enhance the training phase. This approach enables the deep MPC to learn the entire plant model in real-time and the efficacy of the controller is demonstrated through simulations involving a high-DoF robot manipulator, wherein the controller adeptly learns the nonlinear plant dynamics expeditiously and exhibits commendable performance in the motion planning task.
Abstract:With the rapid development of civil aviation and the significant improvement of people's living standards, taking an air plane has become a common and efficient way of travel. However, due to the flight characteris-tics of the aircraft and the sophistication of the fuselage structure, flight de-lays and flight accidents occur from time to time. In addition, the life risk factor brought by aircraft after an accident is also the highest among all means of transportation. In this work, a model based on back-propagation neural network was used to predict flight accidents. By collecting historical flight data, including a variety of factors such as meteorological conditions, aircraft technical condition, and pilot experience, we trained a backpropaga-tion neural network model to identify potential accident risks. In the model design, a multi-layer perceptron structure is used to optimize the network performance by adjusting the number of hidden layer nodes and the learning rate. Experimental analysis shows that the model can effectively predict flight accidents with high accuracy and reliability.