Abstract:Distributed sensing by cooperative drone swarms is crucial for several Smart City applications, such as traffic monitoring and disaster response. Using an indoor lab with inexpensive drones, a testbed supports complex and ambitious studies on these systems while maintaining low cost, rigor, and external validity. This paper introduces the Multi-drone Sensing Experimentation Testbed (M-SET), a novel platform designed to prototype, develop, test, and evaluate distributed sensing with swarm intelligence. M-SET addresses the limitations of existing testbeds that fail to emulate collisions, thus lacking realism in outdoor environments. By integrating a collision avoidance method based on a potential field algorithm, M-SET ensures collision-free navigation and sensing, further optimized via a multi-agent collective learning algorithm. Extensive evaluation demonstrates accurate energy consumption estimation and a low risk of collisions, providing a robust proof-of-concept. New insights show that M-SET has significant potential to support ambitious research with minimal cost, simplicity, and high sensing quality.
Abstract:Swarms of smart drones, with the support of charging technology, can provide completing sensing capabilities in Smart Cities, such as traffic monitoring and disaster response. Existing approaches, including distributed optimization and deep reinforcement learning (DRL), aim to coordinate drones to achieve cost-effective, high-quality navigation, sensing, and recharging. However, they have distinct challenges: short-term optimization struggles to provide sustained benefits, while long-term DRL lacks scalability, resilience, and flexibility. To bridge this gap, this paper introduces a new progressive approach that encompasses the planning and selection based on distributed optimization, as well as DRL-based flying direction scheduling. Extensive experiment with datasets generated from realisitic urban mobility demonstrate the outstanding performance of the proposed solution in traffic monitoring compared to three baseline methods.
Abstract:The legitimacy of bottom-up democratic processes for the distribution of public funds by policy-makers is challenging and complex. Participatory budgeting is such a process, where voting outcomes may not always be fair or inclusive. Deliberation for which project ideas to put for voting and choose for implementation lack systematization and do not scale. This paper addresses these grand challenges by introducing a novel and legitimate iterative consensus-based participatory budgeting process. Consensus is designed to be a result of decision support via an innovative multi-agent reinforcement learning approach. Voters are assisted to interact with each other to make viable compromises. Extensive experimental evaluation with real-world participatory budgeting data from Poland reveal striking findings: Consensus is reachable, efficient and robust. Compromise is required, which is though comparable to the one of existing voting aggregation methods that promote fairness and inclusion without though attaining consensus.
Abstract:Large language models of artificial intelligence (AI) such as ChatGPT find remarkable but controversial applicability in science and research. This paper reviews epistemological challenges, ethical and integrity risks in science conduct. This is with the aim to lay new timely foundations for a high-quality research ethics review in the era of AI. The role of AI language models as a research instrument and subject is scrutinized along with ethical implications for scientists, participants and reviewers. Ten recommendations shape a response for a more responsible research conduct with AI language models.
Abstract:Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for first time attitudinal, intrinsic, rewarded and coordinated data sharing in a rigorous living-lab experiment of high realism involving >27,000 data-sharing choices. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win-win for all: remarkable privacy recovery for people with evident costs reduction for service providers.
Abstract:Smart City applications, such as traffic monitoring and disaster response, often use swarms of intelligent and cooperative drones to efficiently collect sensor data over different areas of interest and time spans. However, when the required sensing becomes spatio-temporally large and varying, a collective arrangement of sensing tasks to a large number of battery-restricted and distributed drones is challenging. To address this problem, we introduce a scalable and energy-aware model for planning and coordination of spatio-temporal sensing. The coordination model is built upon a decentralized multi-agent collective learning algorithm (EPOS) to ensure scalability, resilience, and flexibility that existing approaches lack of. Experimental results illustrate the outstanding performance of the proposed method compared to state-of-the-art methods. Analytical results contribute a deeper understanding of how coordinated mobility of drones influences sensing performance. This novel coordination solution is applied to traffic monitoring using real-world data to demonstrate a $46.45\%$ more accurate and $2.88\%$ more efficient detection of vehicles as the number of drones become a scarce resource.
Abstract:This paper introduces a testbed to study distributed sensing problems of Unmanned Aerial Vehicles (UAVs) exhibiting swarm intelligence. Several Smart City applications, such as transport and disaster response, require efficient collection of sensor data by a swarm of intelligent and cooperative UAVs. This often proves to be too complex and costly to study systematically and rigorously without compromising scale, realism and external validity. With the proposed testbed, this paper sets a stepping stone to emulate, within small laboratory spaces, large sensing areas of interest originated from empirical data and simulation models. Over this sensing map, a swarm of low-cost drones can fly allowing the study of a large spectrum of problems such as energy consumption, charging control, navigation and collision avoidance. The applicability of a decentralized multi-agent collective learning algorithm (EPOS) for UAV swarm intelligence along with the assessment of power consumption measurements provide a proof-of-concept and validate the accuracy of the proposed testbed.
Abstract:Outdoor `living lab' experimentation using pervasive computing provides new opportunities: higher realism, external validity and large-scale socio-spatio-temporal observations. However, experimentation `in the wild' is highly complex and costly. Noise, biases, privacy concerns to comply with standards of ethical review boards, remote moderation, control of experimental conditions and equipment perplex the collection of high-quality data for causal inference. This article introduces Smart Agora, a novel open-source software platform for rigorous systematic outdoor experimentation. Without writing a single line of code, highly complex experimental scenarios are visually designed and automatically deployed to smart phones. Novel geolocated survey and sensor data are collected subject of participants verifying desired experimental conditions, for instance. their presence at certain urban spots. This new approach drastically improves the quality and purposefulness of crowd sensing, tailored to conditions that confirm/reject hypotheses. The features that support this innovative functionality and the broad spectrum of its applicability are demonstrated.
Abstract:Building trustworthy knowledge graphs for cyber-physical social systems (CPSS) is a challenge. In particular, current approaches relying on human experts have limited scalability, while automated approaches are often not accountable to users resulting in knowledge graphs of questionable quality. This paper introduces a novel pervasive knowledge graph builder that brings together automation, experts' and crowd-sourced citizens' knowledge. The knowledge graph grows via automated link predictions using genetic programming that are validated by humans for improving transparency and calibrating accuracy. The knowledge graph builder is designed for pervasive devices such as smartphones and preserves privacy by localizing all computations. The accuracy, practicality, and usability of the knowledge graph builder is evaluated in a real-world social experiment that involves a smartphone implementation and a Smart City application scenario. The proposed knowledge graph building methodology outperforms the baseline method in terms of accuracy while demonstrating its efficient calculations on smartphones and the feasibility of the pervasive human supervision process in terms of high interactions throughput. These findings promise new opportunities to crowd-source and operate pervasive reasoning systems for cyber-physical social systems in Smart Cities.
Abstract:In a so-called overpopulated world, sustainable consumption is of existential importance. The expanding spectrum of product choices and their production complexity challenge consumers to make informed and value-sensitive decisions. Recent approaches based on (personalized) psychological manipulation are often intransparent, potentially privacy-invasive and inconsistent with informational self-determination. In contrast, responsible consumption based on informed choices currently requires reasoning to an extent that tends to overwhelm human cognitive capacity. As a result, a collective shift towards sustainable consumption remains a grand challenge. Here we demonstrate a novel personal shopping assistant that empowers a value-sensitive design and leverages sustainability awareness, using experts' knowledge and "wisdom of the crowd" for transparent product information and explainable products ratings. Real-world field experiments in two supermarkets confirm higher sustainability awareness and a bottom-up behavioral shift towards more sustainable consumption. These results encourage novel business models for retailers and producers, ethically aligned with consumer values and higher sustainability.