Abstract:Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area--scalability to high-dimensional settings--with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
Abstract:Preference-based reward learning is a popular technique for teaching robots and autonomous systems how a human user wants them to perform a task. Previous works have shown that actively synthesizing preference queries to maximize information gain about the reward function parameters improves data efficiency. The information gain criterion focuses on precisely identifying all parameters of the reward function. This can potentially be wasteful as many parameters may result in the same reward, and many rewards may result in the same behavior in the downstream tasks. Instead, we show that it is possible to optimize for learning the reward function up to a behavioral equivalence class, such as inducing the same ranking over behaviors, distribution over choices, or other related definitions of what makes two rewards similar. We introduce a tractable framework that can capture such definitions of similarity. Our experiments in a synthetic environment, an assistive robotics environment with domain transfer, and a natural language processing problem with real datasets demonstrate the superior performance of our querying method over the state-of-the-art information gain method.