Abstract:Modern artificial intelligence is supported by machine learning models (e.g., foundation models) that are pretrained on a massive data corpus and then adapted to solve a variety of downstream tasks. To summarize performance across multiple tasks, evaluation metrics are often aggregated into a summary metric, e.g., average accuracy across 10 question-answering tasks. When aggregating evaluation metrics, it is useful to incorporate uncertainty in the aggregate metric in order to gain a more realistic understanding of model performance. Our objective in this work is to demonstrate how statistical methodology can be used for quantifying uncertainty in metrics that have been aggregated across multiple tasks. The methods we emphasize are bootstrapping, Bayesian hierarchical (i.e., multilevel) modeling, and the visualization of task weightings that consider standard errors. These techniques reveal insights such as the dominance of a specific model for certain types of tasks despite an overall poor performance. We use a popular ML benchmark, the Visual Task Adaptation Benchmark (VTAB), to demonstrate the usefulness of our approaches.
Abstract:This paper introduces posterior mean matching (PMM), a new method for generative modeling that is grounded in Bayesian inference. PMM uses conjugate pairs of distributions to model complex data of various modalities like images and text, offering a flexible alternative to existing methods like diffusion models. PMM models iteratively refine noisy approximations of the target distribution using updates from online Bayesian inference. PMM is flexible because its mechanics are based on general Bayesian models. We demonstrate this flexibility by developing specialized examples: a generative PMM model of real-valued data using the Normal-Normal model, a generative PMM model of count data using a Gamma-Poisson model, and a generative PMM model of discrete data using a Dirichlet-Categorical model. For the Normal-Normal PMM model, we establish a direct connection to diffusion models by showing that its continuous-time formulation converges to a stochastic differential equation (SDE). Additionally, for the Gamma-Poisson PMM, we derive a novel SDE driven by a Cox process, which is a significant departure from traditional Brownian motion-based generative models. PMMs achieve performance that is competitive with generative models for language modeling and image generation.