Abstract:Modern artificial intelligence is supported by machine learning models (e.g., foundation models) that are pretrained on a massive data corpus and then adapted to solve a variety of downstream tasks. To summarize performance across multiple tasks, evaluation metrics are often aggregated into a summary metric, e.g., average accuracy across 10 question-answering tasks. When aggregating evaluation metrics, it is useful to incorporate uncertainty in the aggregate metric in order to gain a more realistic understanding of model performance. Our objective in this work is to demonstrate how statistical methodology can be used for quantifying uncertainty in metrics that have been aggregated across multiple tasks. The methods we emphasize are bootstrapping, Bayesian hierarchical (i.e., multilevel) modeling, and the visualization of task weightings that consider standard errors. These techniques reveal insights such as the dominance of a specific model for certain types of tasks despite an overall poor performance. We use a popular ML benchmark, the Visual Task Adaptation Benchmark (VTAB), to demonstrate the usefulness of our approaches.
Abstract:In machine learning research, it is common to evaluate algorithms via their performance on standard benchmark datasets. While a growing body of work establishes guidelines for -- and levies criticisms at -- data and benchmarking practices in machine learning, comparatively less attention has been paid to the data repositories where these datasets are stored, documented, and shared. In this paper, we analyze the landscape of these $\textit{benchmark data repositories}$ and the role they can play in improving benchmarking. This role includes addressing issues with both datasets themselves (e.g., representational harms, construct validity) and the manner in which evaluation is carried out using such datasets (e.g., overemphasis on a few datasets and metrics, lack of reproducibility). To this end, we identify and discuss a set of considerations surrounding the design and use of benchmark data repositories, with a focus on improving benchmarking practices in machine learning.