Abstract:Reconstructing semantic 3D building models at the level of detail (LoD) 3 is a long-standing challenge. Unlike mesh-based models, they require watertight geometry and object-wise semantics at the fa\c{c}ade level. The principal challenge of such demanding semantic 3D reconstruction is reliable fa\c{c}ade-level semantic segmentation of 3D input data. We present a novel method, called Scan2LoD3, that accurately reconstructs semantic LoD3 building models by improving fa\c{c}ade-level semantic 3D segmentation. To this end, we leverage laser physics and 3D building model priors to probabilistically identify model conflicts. These probabilistic physical conflicts propose locations of model openings: Their final semantics and shapes are inferred in a Bayesian network fusing multimodal probabilistic maps of conflicts, 3D point clouds, and 2D images. To fulfill demanding LoD3 requirements, we use the estimated shapes to cut openings in 3D building priors and fit semantic 3D objects from a library of fa\c{c}ade objects. Extensive experiments on the TUM city campus datasets demonstrate the superior performance of the proposed Scan2LoD3 over the state-of-the-art methods in fa\c{c}ade-level detection, semantic segmentation, and LoD3 building model reconstruction. We believe our method can foster the development of probability-driven semantic 3D reconstruction at LoD3 since not only the high-definition reconstruction but also reconstruction confidence becomes pivotal for various applications such as autonomous driving and urban simulations.
Abstract:Semantic 3D building models are widely available and used in numerous applications. Such 3D building models display rich semantics but no fa\c{c}ade openings, chiefly owing to their aerial acquisition techniques. Hence, refining models' fa\c{c}ades using dense, street-level, terrestrial point clouds seems a promising strategy. In this paper, we propose a method of combining visibility analysis and neural networks for enriching 3D models with window and door features. In the method, occupancy voxels are fused with classified point clouds, which provides semantics to voxels. Voxels are also used to identify conflicts between laser observations and 3D models. The semantic voxels and conflicts are combined in a Bayesian network to classify and delineate fa\c{c}ade openings, which are reconstructed using a 3D model library. Unaffected building semantics is preserved while the updated one is added, thereby upgrading the building model to LoD3. Moreover, Bayesian network results are back-projected onto point clouds to improve points' classification accuracy. We tested our method on a municipal CityGML LoD2 repository and the open point cloud datasets: TUM-MLS-2016 and TUM-FA\c{C}ADE. Validation results revealed that the method improves the accuracy of point cloud semantic segmentation and upgrades buildings with fa\c{c}ade elements. The method can be applied to enhance the accuracy of urban simulations and facilitate the development of semantic segmentation algorithms.