Abstract:Developing a reliable vision system is a fundamental challenge for robotic technologies (e.g., indoor service robots and outdoor autonomous robots) which can ensure reliable navigation even in challenging environments such as adverse weather conditions (e.g., fog, rain), poor lighting conditions (e.g., over/under exposure), or sensor degradation (e.g., blurring, noise), and can guarantee high performance in safety-critical functions. Current solutions proposed to improve model robustness usually rely on generic data augmentation techniques or employ costly test-time adaptation methods. In addition, most approaches focus on addressing a single vision task (typically, image recognition) utilising synthetic data. In this paper, we introduce Per-corruption Adaptation of Normalization statistics (PAN) to enhance the model robustness of vision systems. Our approach entails three key components: (i) a corruption type identification module, (ii) dynamic adjustment of normalization layer statistics based on identified corruption type, and (iii) real-time update of these statistics according to input data. PAN can integrate seamlessly with any convolutional model for enhanced accuracy in several robot vision tasks. In our experiments, PAN obtains robust performance improvement on challenging real-world corrupted image datasets (e.g., OpenLoris, ExDark, ACDC), where most of the current solutions tend to fail. Moreover, PAN outperforms the baseline models by 20-30% on synthetic benchmarks in object recognition tasks.
Abstract:Improving model robustness in case of corrupted images is among the key challenges to enable robust vision systems on smart devices, such as robotic agents. Particularly, robust test-time performance is imperative for most of the applications. This paper presents a novel approach to improve robustness of any classification model, especially on severely corrupted images. Our method (FROST) employs high-frequency features to detect input image corruption type, and select layer-wise feature normalization statistics. FROST provides the state-of-the-art results for different models and datasets, outperforming competitors on ImageNet-C by up to 37.1% relative gain, improving baseline of 40.9% mCE on severe corruptions.
Abstract:State-of-the-art multimodal semantic segmentation approaches combining LiDAR and color data are usually designed on top of asymmetric information-sharing schemes and assume that both modalities are always available. Regrettably, this strong assumption may not hold in real-world scenarios, where sensors are prone to failure or can face adverse conditions (night-time, rain, fog, etc.) that make the acquired information unreliable. Moreover, these architectures tend to fail in continual learning scenarios. In this work, we re-frame the task of multimodal semantic segmentation by enforcing a tightly-coupled feature representation and a symmetric information-sharing scheme, which allows our approach to work even when one of the input modalities is missing. This makes our model reliable even in safety-critical settings, as is the case of autonomous driving. We evaluate our approach on the SemanticKITTI dataset, comparing it with our closest competitor. We also introduce an ad-hoc continual learning scheme and show results in a class-incremental continual learning scenario that prove the effectiveness of the approach also in this setting.
Abstract:During the last few years, continual learning (CL) strategies for image classification and segmentation have been widely investigated designing innovative solutions to tackle catastrophic forgetting, like knowledge distillation and self-inpainting. However, the application of continual learning paradigms to point clouds is still unexplored and investigation is required, especially using architectures that capture the sparsity and uneven distribution of LiDAR data. The current paper analyzes the problem of class incremental learning applied to point cloud semantic segmentation, comparing approaches and state-of-the-art architectures. To the best of our knowledge, this is the first example of class-incremental continual learning for LiDAR point cloud semantic segmentation. Different CL strategies were adapted to LiDAR point clouds and tested, tackling both classic fine-tuning scenarios and the Coarse-to-Fine learning paradigm. The framework has been evaluated through two different architectures on SemanticKITTI, obtaining results in line with state-of-the-art CL strategies and standard offline learning.
Abstract:Recent advances in autonomous robotic technologies have highlighted the growing need for precise environmental analysis. LiDAR semantic segmentation has gained attention to accomplish fine-grained scene understanding by acting directly on raw content provided by sensors. Recent solutions showed how different learning techniques can be used to improve the performance of the model, without any architectural or dataset change. Following this trend, we present a coarse-to-fine setup that LEArns from classification mistaKes (LEAK) derived from a standard model. First, classes are clustered into macro groups according to mutual prediction errors; then, the learning process is regularized by: (1) aligning class-conditional prototypical feature representation for both fine and coarse classes, (2) weighting instances with a per-class fairness index. Our LEAK approach is very general and can be seamlessly applied on top of any segmentation architecture; indeed, experimental results showed that it enables state-of-the-art performances on different architectures, datasets and tasks, while ensuring more balanced class-wise results and faster convergence.