School of Electronic Engineering, Xidian University
Abstract:Understanding and analyzing the spatial semantics and structure of forests is essential for accurate forest resource monitoring and ecosystem research. However, the lack of large-scale and annotated datasets has limited the widespread use of advanced intelligent techniques in this field. To address this challenge, a fully automated synthetic data generation and processing framework based on the concepts of Digital Cousins and Simulation-to-Reality (Sim2Real) is proposed, offering versatility and scalability to any size and platform. Using this process, we created the Boreal3D, the world's largest forest point cloud dataset. It includes 1000 highly realistic and structurally diverse forest plots across four different platforms, totaling 48,403 trees and over 35.3 billion points. Each point is labeled with semantic, instance, and viewpoint information, while each tree is described with structural parameters such as diameter, crown width, leaf area, and total volume. We designed and conducted extensive experiments to evaluate the potential of Boreal3D in advancing fine-grained 3D forest structure analysis in real-world applications. The results demonstrate that with certain strategies, models pre-trained on synthetic data can significantly improve performance when applied to real forest datasets. Especially, the findings reveal that fine-tuning with only 20% of real-world data enables the model to achieve performance comparable to models trained exclusively on entire real-world data, highlighting the value and potential of our proposed framework. The Boreal3D dataset, and more broadly, the synthetic data augmentation framework, is poised to become a critical resource for advancing research in large-scale 3D forest scene understanding and structural parameter estimation.
Abstract:Transformer-based methods have become the dominant approach for 3D instance segmentation. These methods predict instance masks via instance queries, ranking them by classification confidence and IoU scores to select the top prediction as the final outcome. However, it has been observed that the current models employ a fixed and higher number of queries than the instances present within a scene. In such instances, multiple queries predict the same instance, yet only a single query is ultimately optimized. The close scores of queries in the lower-level decoders make it challenging for the dominant query to distinguish itself rapidly, which ultimately impairs the model's accuracy and convergence efficiency. This phenomenon is referred to as inter-query competition. To address this challenge, we put forth a series of plug-and-play competition-oriented designs, collectively designated as the CompetitorFormer, with the aim of reducing competition and facilitating a dominant query. Experiments showed that integrating our designs with state-of-the-art frameworks consistently resulted in significant performance improvements in 3D instance segmentation across a range of datasets.