Abstract:Neural network-based variational Monte Carlo (NN-VMC) has emerged as a promising cutting-edge technique of ab initio quantum chemistry. However, the high computational cost of existing approaches hinders their applications in realistic chemistry problems. Here, we report the development of a new NN-VMC method that achieves a remarkable speed-up by more than one order of magnitude, thereby greatly extending the applicability of NN-VMC to larger systems. Our key design is a novel computational framework named Forward Laplacian, which computes the Laplacian associated with neural networks, the bottleneck of NN-VMC, through an efficient forward propagation process. We then demonstrate that Forward Laplacian is not only versatile but also facilitates more developments of acceleration methods across various aspects, including optimization for sparse derivative matrix and efficient neural network design. Empirically, our approach enables NN-VMC to investigate a broader range of atoms, molecules and chemical reactions for the first time, providing valuable references to other ab initio methods. The results demonstrate a great potential in applying deep learning methods to solve general quantum mechanical problems.
Abstract:Designing neural networks with bounded Lipschitz constant is a promising way to obtain certifiably robust classifiers against adversarial examples. However, the relevant progress for the important $\ell_\infty$ perturbation setting is rather limited, and a principled understanding of how to design expressive $\ell_\infty$ Lipschitz networks is still lacking. In this paper, we bridge the gap by studying certified $\ell_\infty$ robustness from a novel perspective of representing Boolean functions. We derive two fundamental impossibility results that hold for any standard Lipschitz network: one for robust classification on finite datasets, and the other for Lipschitz function approximation. These results identify that networks built upon norm-bounded affine layers and Lipschitz activations intrinsically lose expressive power even in the two-dimensional case, and shed light on how recently proposed Lipschitz networks (e.g., GroupSort and $\ell_\infty$-distance nets) bypass these impossibilities by leveraging order statistic functions. Finally, based on these insights, we develop a unified Lipschitz network that generalizes prior works, and design a practical version that can be efficiently trained (making certified robust training free). Extensive experiments show that our approach is scalable, efficient, and consistently yields better certified robustness across multiple datasets and perturbation radii than prior Lipschitz networks.
Abstract:Recently, Zhang et al. (2021) developed a new neural network architecture based on $\ell_\infty$-distance functions, which naturally possesses certified robustness by its construction. Despite the excellent theoretical properties, the model so far can only achieve comparable performance to conventional networks. In this paper, we significantly boost the certified robustness of $\ell_\infty$-distance nets through a careful analysis of its training process. In particular, we show the $\ell_p$-relaxation, a crucial way to overcome the non-smoothness of the model, leads to an unexpected large Lipschitz constant at the early training stage. This makes the optimization insufficient using hinge loss and produces sub-optimal solutions. Given these findings, we propose a simple approach to address the issues above by using a novel objective function that combines a scaled cross-entropy loss with clipped hinge loss. Our experiments show that using the proposed training strategy, the certified accuracy of $\ell_\infty$-distance net can be dramatically improved from 33.30% to 40.06% on CIFAR-10 ($\epsilon=8/255$), meanwhile significantly outperforming other approaches in this area. Such a result clearly demonstrates the effectiveness and potential of $\ell_\infty$-distance net for certified robustness.