Abstract:The rapid proliferation of deep neural networks (DNNs) is driving a surge in model watermarking technologies, as the trained deep models themselves serve as intellectual properties. The core of existing model watermarking techniques involves modifying or tuning the models' weights. However, with the emergence of increasingly complex models, ensuring the efficiency of watermarking process is essential to manage the growing computational demands. Prioritizing efficiency not only optimizes resource utilization, making the watermarking process more applicable, but also minimizes potential impacts on model performance. In this letter, we propose an efficient watermarking method for latent diffusion models (LDMs) which is based on Low-Rank Adaptation (LoRA). We specifically choose to add trainable low-rank matrices to the existing weight matrices of the models to embed watermark, while keeping the original weights frozen. Moreover, we also propose a dynamic loss weight tuning algorithm to balance the generative task with the watermark embedding task, ensuring that the model can be watermarked with a limited impact on the quality of the generated images. Experimental results show that the proposed method ensures fast watermark embedding and maintains a very low bit error rate of the watermark, a high-quality of the generated image, and a zero false negative rate (FNR) for verification.
Abstract:Amid the burgeoning development of generative models like diffusion models, the task of differentiating synthesized audio from its natural counterpart grows more daunting. Deepfake detection offers a viable solution to combat this challenge. Yet, this defensive measure unintentionally fuels the continued refinement of generative models. Watermarking emerges as a proactive and sustainable tactic, preemptively regulating the creation and dissemination of synthesized content. Thus, this paper, as a pioneer, proposes the generative robust audio watermarking method (Groot), presenting a paradigm for proactively supervising the synthesized audio and its source diffusion models. In this paradigm, the processes of watermark generation and audio synthesis occur simultaneously, facilitated by parameter-fixed diffusion models equipped with a dedicated encoder. The watermark embedded within the audio can subsequently be retrieved by a lightweight decoder. The experimental results highlight Groot's outstanding performance, particularly in terms of robustness, surpassing that of the leading state-of-the-art methods. Beyond its impressive resilience against individual post-processing attacks, Groot exhibits exceptional robustness when facing compound attacks, maintaining an average watermark extraction accuracy of around 95%.
Abstract:Microscopy images are powerful tools and widely used in the majority of research areas, such as biology, chemistry, physics and materials fields by various microscopies (Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM) and the optical microscope, et al.). However, most of the microscopy images are colourless due to the unique imaging mechanism. Though investigating on some popular solutions proposed recently about colourizing microscopy images, we notice the process of those methods are usually tedious, complicated, and time-consuming. In this paper, inspired by the achievement of machine learning algorithms on different science fields, we introduce two artificial neural networks for grey microscopy image colourization: An end-to-end convolutional neural network (CNN) with a pre-trained model for feature extraction and a pixel-to-pixel Neural Style Transfer convolutional neural network (NST-CNN) which can colourize grey microscopy images with semantic information learned from a user-provided colour image at inference time. Our results show that our algorithm not only could able to colour the microscopy images under complex circumstances precisely but also make the colour naturally according to a massive number of nature images training with proper hue and saturation.