Abstract:The accelerated advancement of speech generative models has given rise to security issues, including model infringement and unauthorized abuse of content. Although existing generative watermarking techniques have proposed corresponding solutions, most methods require substantial computational overhead and training costs. In addition, some methods have limitations in robustness when handling variable-length inputs. To tackle these challenges, we propose \textsc{SOLIDO}, a novel generative watermarking method that integrates parameter-efficient fine-tuning with speech watermarking through low-rank adaptation (LoRA) for speech diffusion models. Concretely, the watermark encoder converts the watermark to align with the input of diffusion models. To achieve precise watermark extraction from variable-length inputs, the watermark decoder based on depthwise separable convolution is designed for watermark recovery. To further enhance speech generation performance and watermark extraction capability, we propose a speech-driven lightweight fine-tuning strategy, which reduces computational overhead through LoRA. Comprehensive experiments demonstrate that the proposed method ensures high-fidelity watermarked speech even at a large capacity of 2000 bps. Furthermore, against common individual and compound speech attacks, our SOLIDO achieves a maximum average extraction accuracy of 99.20\% and 98.43\%, respectively. It surpasses other state-of-the-art methods by nearly 23\% in resisting time-stretching attacks.
Abstract:The rapid advancement of generative models has led to the synthesis of real-fake ambiguous voices. To erase the ambiguity, embedding watermarks into the frequency-domain features of synthesized voices has become a common routine. However, the robustness achieved by choosing the frequency domain often comes at the expense of fine-grained voice features, leading to a loss of fidelity. Maximizing the comprehensive learning of time-domain features to enhance fidelity while maintaining robustness, we pioneer a \textbf{\underline{t}}emporal-aware \textbf{\underline{r}}ob\textbf{\underline{u}}st wat\textbf{\underline{e}}rmarking (\emph{True}) method for protecting the speech and singing voice.
Abstract:Amid the burgeoning development of generative models like diffusion models, the task of differentiating synthesized audio from its natural counterpart grows more daunting. Deepfake detection offers a viable solution to combat this challenge. Yet, this defensive measure unintentionally fuels the continued refinement of generative models. Watermarking emerges as a proactive and sustainable tactic, preemptively regulating the creation and dissemination of synthesized content. Thus, this paper, as a pioneer, proposes the generative robust audio watermarking method (Groot), presenting a paradigm for proactively supervising the synthesized audio and its source diffusion models. In this paradigm, the processes of watermark generation and audio synthesis occur simultaneously, facilitated by parameter-fixed diffusion models equipped with a dedicated encoder. The watermark embedded within the audio can subsequently be retrieved by a lightweight decoder. The experimental results highlight Groot's outstanding performance, particularly in terms of robustness, surpassing that of the leading state-of-the-art methods. Beyond its impressive resilience against individual post-processing attacks, Groot exhibits exceptional robustness when facing compound attacks, maintaining an average watermark extraction accuracy of around 95%.