Abstract:Purely character-based language models (LMs) have been lagging in quality on large scale datasets, and current state-of-the-art LMs rely on word tokenization. It has been assumed that injecting the prior knowledge of a tokenizer into the model is essential to achieving competitive results. In this paper, we show that contrary to this conventional wisdom, tokenizer-free LMs with sufficient capacity can achieve competitive performance on a large scale dataset. We train a vanilla transformer network with 40 self-attention layers on the One Billion Word (lm1b) benchmark and achieve a new state of the art for tokenizer-free LMs, pushing these models to be on par with their word-based counterparts.
Abstract:LSTMs and other RNN variants have shown strong performance on character-level language modeling. These models are typically trained using truncated backpropagation through time, and it is common to assume that their success stems from their ability to remember long-term contexts. In this paper, we show that a deep (64-layer) transformer model with fixed context outperforms RNN variants by a large margin, achieving state of the art on two popular benchmarks- 1.13 bits per character on text8 and 1.06 on enwik8. To get good results at this depth, we show that it is important to add auxiliary losses, both at intermediate network layers and intermediate sequence positions.