Abstract:We develop a technique for deriving data-dependent error bounds for transductive learning algorithms based on transductive Rademacher complexity. Our technique is based on a novel general error bound for transduction in terms of transductive Rademacher complexity, together with a novel bounding technique for Rademacher averages for particular algorithms, in terms of their "unlabeled-labeled" representation. This technique is relevant to many advanced graph-based transductive algorithms and we demonstrate its effectiveness by deriving error bounds to three well known algorithms. Finally, we present a new PAC-Bayesian bound for mixtures of transductive algorithms based on our Rademacher bounds.
Abstract:Efficient online learning with pairwise loss functions is a crucial component in building large-scale learning system that maximizes the area under the Receiver Operator Characteristic (ROC) curve. In this paper we investigate the generalization performance of online learning algorithms with pairwise loss functions. We show that the existing proof techniques for generalization bounds of online algorithms with a univariate loss can not be directly applied to pairwise losses. In this paper, we derive the first result providing data-dependent bounds for the average risk of the sequence of hypotheses generated by an arbitrary online learner in terms of an easily computable statistic, and show how to extract a low risk hypothesis from the sequence. We demonstrate the generality of our results by applying it to two important problems in machine learning. First, we analyze two online algorithms for bipartite ranking; one being a natural extension of the perceptron algorithm and the other using online convex optimization. Secondly, we provide an analysis for the risk bound for an online algorithm for supervised metric learning.
Abstract:This paper uses the notion of algorithmic stability to derive novel generalization bounds for several families of transductive regression algorithms, both by using convexity and closed-form solutions. Our analysis helps compare the stability of these algorithms. It also shows that a number of widely used transductive regression algorithms are in fact unstable. Finally, it reports the results of experiments with local transductive regression demonstrating the benefit of our stability bounds for model selection, for one of the algorithms, in particular for determining the radius of the local neighborhood used by the algorithm.