Abstract:This paper serves as a correction to the conference version. In this work, we explore uplink communication in cell-free (CF) massive multiple-input multiple-output (MaMIMO) systems, employing semi-blind transmission structures to mitigate pilot contamination. We propose a simplified, decentralized method based on Expectation Propagation (EP) for semi-blind channel estimation. By utilizing orthogonal pilots, we preprocess the received signals to establish a simplified equivalent factorization scheme for the transmission process. Moreover, this study integrates Central Limit Theory (CLT) with EP, eliminating the need to introduce new auxiliary variables in the factorization scheme. We also refine the algorithm by assessing the variable scales involved. Finally, a decentralized approach is proposed to significantly reduce the computational demands on the Central Processing Unit (CPU).
Abstract:We introduce an energy-efficient downlink rate splitting multiple access (RSMA) scheme, employing a simple matched filter (MF) for precoding. We consider a transmitter equipped with multiple antennas, serving several single-antenna users at the same frequency-time resource, each with distinct message requests. Within the conventional 1-layer RSMA framework, requested messages undergo splitting into common and private streams, which are then precoded separately before transmission. In contrast, we propose a novel strategy where only an MF is employed to precode both the common and private streams in RSMA, promising significantly improved energy efficiency and reduced complexity. We demonstrate that this MF-precoded RSMA achieves the same delivery performance as conventional RSMA, where the common stream is beamformed using maximal ratio transmission (MRT) and the private streams are precoded by MF. Taking into account imperfect channel state information at the transmitter, we proceed to analyze the delivery performance of the MF-precoded RSMA. We derive the ergodic rates for decoding the common and private streams at a target user respectively in the massive MIMO regime. Finally, numerical simulations validate the accuracy of our analytical models, as well as demonstrate the advantages over conventional RSMA.
Abstract:This paper answers a fundamental question about the exact distribution of the signal-to-interference-plus-noise ratio (SINR) under matched-filter (MF) precoding. Specifically, we derive the exact expressions for the cumulative distribution function (CDF) and the probability density function (PDF) of SINR under MF precoding over Rayleigh fading channels. Based on the exact analysis, we then rigorously prove that the SINR converges to some specific distributions separately in high SNR and in massive MIMO. To simplify the exact result in general cases, we develop a good approximation by modelling the interference as a Beta distribution. We then shift to the exact analysis of the transmit rate, and answer the fundamental question: How does the exact rate converge to the well-known asymptotic rate in massive MIMO? After that, we propose a novel approximation for the ergodic rate, which performs better than various existing approximations. Finally, we present some numerical results to demonstrate the accuracy of the derived analytical models.
Abstract:The full-duplex (FD) technology has the potential to radically evolve wireless systems, facilitating the integration of both communications and radar functionalities into a single device, thus, enabling joint communication and sensing (JCAS). In this paper, we present a novel approach for JCAS that incorporates a reconfigurable intelligent surface (RIS) in the near-field of an FD multiple-input multiple-output (MIMO) node, which is jointly optimized with the digital beamformers to enable JSAC and efficiently handle self-interference (SI). We propose a novel problem formulation for FD MIMO JCAS systems to jointly minimize the total received power at the FD node's radar receiver while maximizing the sum rate of downlink communications subject to a Cram\'{e}r-Rao bound (CRB) constraint. In contrast to the typically used CRB in the relevant literature, we derive a novel, more accurate, target estimation bound that fully takes into account the RIS deployment. The considered problem is solved using alternating optimization, which is guaranteed to converge to a local optimum. The simulation results demonstrate that the proposed scheme achieves significant performance improvement both for communications and sensing. It is showcased that, jointly designing the FD MIMO beamformers and the RIS phase configuration to be SI aware can significantly loosen the requirement for additional SI cancellation.
Abstract:Full duplex (FD) systems suffer from very high hardware cost and high power consumption to mitigate the self-interference (SI) in the analog domain. Moreover, in millimeter wave (mmWave) they rely on hybrid beamforming (HYBF) as a signal processing tool to partially deal with the SI, which presents many drawback, e.g., high insertion loss, high power consumption and high computational complexity for its configuration. This article proposes the use of near-field (NF-) IRSs for FD systems with the objective to solve the aforementioned issues cost-efficiently. Namely, we propose to truncate the analog stage of the mmWave FD systems and assist them with an NF-IRS, to simultaneously and smartly control the uplink (DL) and downlink (DL) channels, while assisting in shaping the SI channel: this to obtain very strong passive SI cancellation. A novel joint active and passive beamforming design for the weighted sum-rate (WSR) maximization of a NF-IRS-assisted mmWave point-to-point FD system is presented. Results show that the proposed solution fully reaps the benefits of the IRSs only when they operate in the NF, which leads to considerably higher gains compared to the conventional massive MIMO (mMIMO) mmWave FD and half duplex (HD) systems.
Abstract:This paper presents two novel hybrid beamforming (HYBF) designs for a multi-cell massive multiple-input-multiple-output (mMIMO) millimeter wave (mmWave) full duplex (FD) system under limited dynamic range (LDR). Firstly, we present a novel centralized HYBF (C-HYBF) scheme based on alternating optimization. In general, the complexity of C-HYBF schemes scales quadratically as a function of the number of users and cells, which may limit their scalability. Moreover, they require significant communication overhead to transfer complete channel state information (CSI) to the central node every channel coherence time for optimization. The central node also requires very high computational power to jointly optimize many variables for the uplink (UL) and downlink (DL) users in FD systems. To overcome these drawbacks, we propose a very low-complexity and scalable cooperative per-link parallel and distributed (P$\&$D)-HYBF scheme. It allows each mmWave FD base station (BS) to update the beamformers for its users in a distributed fashion and independently in parallel on different computational processors. The complexity of P$\&$D-HYBF scales only linearly as the network size grows, making it desirable for the next generation of large and dense mmWave FD networks. Simulation results show that both designs significantly outperform the fully digital half duplex (HD) system with only a few radio-frequency (RF) chains, achieve similar performance, and the P$\&$D-HYBF design requires considerably less execution time.
Abstract:Full-Duplex (FD) communication can revolutionize wireless communications as it avoids using independent channels for bi-directional communications. In this work, we generalize the point-to-point FD communication in millimeter wave (mmWave) band consisting of K-pair of massive MIMO FD nodes operating simultaneously. To enable the coexistence of massive MIMO FD links cost-efficiently, we present novel joint hybrid beamforming (HYBF) and combining scheme for weighted sum-rate (WSR) maximization. The proposed algorithm is based on alternative optimization based on the minorization-maximization method. Moreover, we present a novel SI and massive MIMO interference channel aware power allocation scheme to include the optimal power control. Simulation results show significant performance improvement compared to a traditional bidirectional half-duplex communication system.