Ford Motor Company
Abstract:This paper describes a physics-based end-to-end software simulation for image systems. We use the software to explore sensors designed to enhance performance in high dynamic range (HDR) environments, such as driving through daytime tunnels and under nighttime conditions. We synthesize physically realistic HDR spectral radiance images and use them as the input to digital twins that model the optics and sensors of different systems. This paper makes three main contributions: (a) We create a labeled (instance segmentation and depth), synthetic radiance dataset of HDR driving scenes. (b) We describe the development and validation of the end-to-end simulation framework. (c) We present a comparative analysis of two single-shot sensors designed for HDR. We open-source both the dataset and the software.
Abstract:The design and evaluation of complex systems can benefit from a software simulation - sometimes called a digital twin. The simulation can be used to characterize system performance or to test its performance under conditions that are difficult to measure (e.g., nighttime for automotive perception systems). We describe the image system simulation software tools that we use to evaluate the performance of image systems for object (automobile) detection. We describe experiments with 13 different cameras with a variety of optics and pixel sizes. To measure the impact of camera spatial resolution, we designed a collection of driving scenes that had cars at many different distances. We quantified system performance by measuring average precision and we report a trend relating system resolution and object detection performance. We also quantified the large performance degradation under nighttime conditions, compared to daytime, for all cameras and a COCO pre-trained network.
Abstract:The evaluation of synthetic micro-structure images is an emerging problem as machine learning and materials science research have evolved together. Typical state of the art methods in evaluating synthetic images from generative models have relied on the Fr\'echet Inception Distance. However, this and other similar methods, are limited in the materials domain due to both the unique features that characterize physically accurate micro-structures and limited dataset sizes. In this study we evaluate a variety of methods on scanning electron microscope (SEM) images of graphene-reinforced polyurethane foams. The primary objective of this paper is to report our findings with regards to the shortcomings of existing methods so as to encourage the machine learning community to consider enhancements in metrics for assessing quality of synthetic images in the material science domain.