Abstract:Fast and effective responses are required when a natural disaster (e.g., earthquake, hurricane, etc.) strikes. Building damage assessment from satellite imagery is critical before relief effort is deployed. With a pair of pre- and post-disaster satellite images, building damage assessment aims at predicting the extent of damage to buildings. With the powerful ability of feature representation, deep neural networks have been successfully applied to building damage assessment. Most existing works simply concatenate pre- and post-disaster images as input of a deep neural network without considering their correlations. In this paper, we propose a novel two-stage convolutional neural network for Building Damage Assessment, called BDANet. In the first stage, a U-Net is used to extract the locations of buildings. Then the network weights from the first stage are shared in the second stage for building damage assessment. In the second stage, a two-branch multi-scale U-Net is employed as backbone, where pre- and post-disaster images are fed into the network separately. A cross-directional attention module is proposed to explore the correlations between pre- and post-disaster images. Moreover, CutMix data augmentation is exploited to tackle the challenge of difficult classes. The proposed method achieves state-of-the-art performance on a large-scale dataset -- xBD. The code is available at https://github.com/ShaneShen/BDANet-Building-Damage-Assessment.
Abstract:Deep learning based methods, such as Convolution Neural Network (CNN), have demonstrated their efficiency in hyperspectral image (HSI) classification. These methods can automatically learn spectral-spatial discriminative features within local patches. However, for each pixel in an HSI, it is not only related to its nearby pixels but also has connections to pixels far away from itself. Therefore, to incorporate the long-range contextual information, a deep fully convolutional network (FCN) with an efficient non-local module, named ENL-FCN, is proposed for HSI classification. In the proposed framework, a deep FCN considers an entire HSI as input and extracts spectral-spatial information in a local receptive field. The efficient non-local module is embedded in the network as a learning unit to capture the long-range contextual information. Different from the traditional non-local neural networks, the long-range contextual information is extracted in a specially designed criss-cross path for computation efficiency. Furthermore, by using a recurrent operation, each pixel's response is aggregated from all pixels of HSI. The benefits of our proposed ENL-FCN are threefold: 1) the long-range contextual information is incorporated effectively, 2) the efficient module can be freely embedded in a deep neural network in a plug-and-play fashion, and 3) it has much fewer learning parameters and requires less computational resources. The experiments conducted on three popular HSI datasets demonstrate that the proposed method achieves state-of-the-art classification performance with lower computational cost in comparison with several leading deep neural networks for HSI.