Abstract:Removing rain effects from an image automatically has many applications such as autonomous driving, drone piloting and photo editing and still draws the attention of many people. Traditional methods use heuristics to handcraft various priors to remove or separate the rain effects from an image. Recently end-to-end deep learning based deraining methods have been proposed to offer more flexibility and effectiveness. However, they tend not to obtain good visual effect when encountered images with heavy rain. Heavy rain brings not only rain streaks but also haze-like effect which is caused by the accumulation of tiny raindrops. Different from previous deraining methods, in this paper we model rainy images with a new rain model to remove not only rain streaks but also haze-like effect. Guided by our model, we design a two-branch network to learn its parameters. Then, an SPP structure is jointly trained to refine the results of our model to control the degree of removing the haze-like effect flexibly. Besides, a subnetwork which can localize the rainy pixels is proposed to guide the training of our network. Extensive experiments on several datasets show that our method outperforms the state-of-the-art in both objectives assessments and visual quality.
Abstract:Rain streaks will inevitably be captured by some outdoor vision systems, which lowers the image visual quality and also interferes various computer vision applications. We present a novel rain removal method in this paper, which consists of two steps, i.e., detection of rain streaks and reconstruction of the rain-removed image. An accurate detection of rain streaks determines the quality of the overall performance. To this end, we first detect rain streaks according to pixel intensities, motivated by the observation that rain streaks often possess higher intensities compared to other neighboring image structures. Some mis-detected locations are then refined through a morphological processing and the principal component analysis (PCA) such that only locations corresponding to real rain streaks are retained. In the second step, we separate image gradients into a background layer and a rain streak layer, thanks to the image quasi-sparsity prior, so that a rain image can be decomposed into a background layer and a rain layer. We validate the effectiveness of our method through quantitative and qualitative evaluations. We show that our method can remove rain (even for some relatively bright rain) from images robustly and outperforms some state-of-the-art rain removal algorithms.