Abstract:WiFi-based smart human sensing technology enabled by Channel State Information (CSI) has received great attention in recent years. However, CSI-based sensing systems suffer from performance degradation when deployed in different environments. Existing works solve this problem by domain adaptation using massive unlabeled high-quality data from the new environment, which is usually unavailable in practice. In this paper, we propose a novel augmented environment-invariant robust WiFi gesture recognition system named AirFi that deals with the issue of environment dependency from a new perspective. The AirFi is a novel domain generalization framework that learns the critical part of CSI regardless of different environments and generalizes the model to unseen scenarios, which does not require collecting any data for adaptation to the new environment. AirFi extracts the common features from several training environment settings and minimizes the distribution differences among them. The feature is further augmented to be more robust to environments. Moreover, the system can be further improved by few-shot learning techniques. Compared to state-of-the-art methods, AirFi is able to work in different environment settings without acquiring any CSI data from the new environment. The experimental results demonstrate that our system remains robust in the new environment and outperforms the compared systems.
Abstract:WiFi sensing has been evolving rapidly in recent years. Empowered by propagation models and deep learning methods, many challenging applications are realized such as WiFi-based human activity recognition and gesture recognition. However, in contrast to deep learning for visual recognition and natural language processing, no sufficiently comprehensive public benchmark exists. In this paper, we highlight the recent progress on deep learning enabled WiFi sensing, and then propose a benchmark, SenseFi, to study the effectiveness of various deep learning models for WiFi sensing. These advanced models are compared in terms of distinct sensing tasks, WiFi platforms, recognition accuracy, model size, computational complexity, feature transferability, and adaptability of unsupervised learning. It is also regarded as a tutorial for deep learning based WiFi sensing, starting from CSI hardware platform to sensing algorithms. The extensive experiments provide us with experiences in deep model design, learning strategy skills and training techniques for real-world applications. To the best of our knowledge, this is the first benchmark with an open-source library for deep learning in WiFi sensing research. The benchmark codes are available at https://github.com/CHENXINYAN-sg/WiFi-CSI-Sensing-Benchmark.
Abstract:WiFi technology has been applied to various places due to the increasing requirement of high-speed Internet access. Recently, besides network services, WiFi sensing is appealing in smart homes since it is device-free, cost-effective and privacy-preserving. Though numerous WiFi sensing methods have been developed, most of them only consider single smart home scenario. Without the connection of powerful cloud server and massive users, large-scale WiFi sensing is still difficult. In this paper, we firstly analyze and summarize these obstacles, and propose an efficient large-scale WiFi sensing framework, namely EfficientFi. The EfficientFi works with edge computing at WiFi APs and cloud computing at center servers. It consists of a novel deep neural network that can compress fine-grained WiFi Channel State Information (CSI) at edge, restore CSI at cloud, and perform sensing tasks simultaneously. A quantized auto-encoder and a joint classifier are designed to achieve these goals in an end-to-end fashion. To the best of our knowledge, the EfficientFi is the first IoT-cloud-enabled WiFi sensing framework that significantly reduces communication overhead while realizing sensing tasks accurately. We utilized human activity recognition and identification via WiFi sensing as two case studies, and conduct extensive experiments to evaluate the EfficientFi. The results show that it compresses CSI data from 1.368Mb/s to 0.768Kb/s with extremely low error of data reconstruction and achieves over 98% accuracy for human activity recognition.