Abstract:Automatic survey generation has emerged as a key task in scientific document processing. While large language models (LLMs) have shown promise in generating survey texts, the lack of standardized evaluation datasets critically hampers rigorous assessment of their performance against human-written surveys. In this work, we present SurveyGen, a large-scale dataset comprising over 4,200 human-written surveys across diverse scientific domains, along with 242,143 cited references and extensive quality-related metadata for both the surveys and the cited papers. Leveraging this resource, we build QUAL-SG, a novel quality-aware framework for survey generation that enhances the standard Retrieval-Augmented Generation (RAG) pipeline by incorporating quality-aware indicators into literature retrieval to assess and select higher-quality source papers. Using this dataset and framework, we systematically evaluate state-of-the-art LLMs under varying levels of human involvement - from fully automatic generation to human-guided writing. Experimental results and human evaluations show that while semi-automatic pipelines can achieve partially competitive outcomes, fully automatic survey generation still suffers from low citation quality and limited critical analysis.
Abstract:LongRecall. The completeness of machine-generated text, ensuring that it captures all relevant information, is crucial in domains such as medicine and law and in tasks like list-based question answering (QA), where omissions can have serious consequences. However, existing recall metrics often depend on lexical overlap, leading to errors with unsubstantiated entities and paraphrased answers, while LLM-as-a-Judge methods with long holistic prompts capture broader semantics but remain prone to misalignment and hallucinations without structured verification. We introduce LongRecall, a general three-stage recall evaluation framework that decomposes answers into self-contained facts, successively narrows plausible candidate matches through lexical and semantic filtering, and verifies their alignment through structured entailment checks. This design reduces false positives and false negatives while accommodating diverse phrasings and contextual variations, serving as a foundational building block for systematic recall assessment. We evaluate LongRecall on three challenging long-form QA benchmarks using both human annotations and LLM-based judges, demonstrating substantial improvements in recall accuracy over strong lexical and LLM-as-a-Judge baselines.
Abstract:We introduce SQL-Exchange, a framework for mapping SQL queries across different database schemas by preserving the source query structure while adapting domain-specific elements to align with the target schema. We investigate the conditions under which such mappings are feasible and beneficial, and examine their impact on enhancing the in-context learning performance of text-to-SQL systems as a downstream task. Our comprehensive evaluation across multiple model families and benchmark datasets--assessing structural alignment with source queries, execution validity on target databases, and semantic correctness--demonstrates that SQL-Exchange is effective across a wide range of schemas and query types. Our results further show that using mapped queries as in-context examples consistently improves text-to-SQL performance over using queries from the source schema.
Abstract:Large Language Models (LLMs) have demonstrated exceptional versatility across diverse domains, yet their application in e-commerce remains underexplored due to a lack of domain-specific datasets. To address this gap, we introduce eC-Tab2Text, a novel dataset designed to capture the intricacies of e-commerce, including detailed product attributes and user-specific queries. Leveraging eC-Tab2Text, we focus on text generation from product tables, enabling LLMs to produce high-quality, attribute-specific product reviews from structured tabular data. Fine-tuned models were rigorously evaluated using standard Table2Text metrics, alongside correctness, faithfulness, and fluency assessments. Our results demonstrate substantial improvements in generating contextually accurate reviews, highlighting the transformative potential of tailored datasets and fine-tuning methodologies in optimizing e-commerce workflows. This work highlights the potential of LLMs in e-commerce workflows and the essential role of domain-specific datasets in tailoring them to industry-specific challenges.
Abstract:The integration of tabular data from diverse sources is often hindered by inconsistencies in formatting and representation, posing significant challenges for data analysts and personal digital assistants. Existing methods for automating tabular data transformations are limited in scope, often focusing on specific types of transformations or lacking interpretability. In this paper, we introduce TabulaX, a novel framework that leverages Large Language Models (LLMs) for multi-class tabular transformations. TabulaX first classifies input tables into four transformation classes (string-based, numerical, algorithmic, and general) and then applies tailored methods to generate human-interpretable transformation functions, such as numeric formulas or programming code. This approach enhances transparency and allows users to understand and modify the mappings. Through extensive experiments on real-world datasets from various domains, we demonstrate that TabulaX outperforms existing state-of-the-art approaches in terms of accuracy, supports a broader class of transformations, and generates interpretable transformations that can be efficiently applied.
Abstract:Online reviews play a pivotal role in influencing consumer decisions across various domains, from purchasing products to selecting hotels or restaurants. However, the sheer volume of reviews -- often containing repetitive or irrelevant content -- leads to information overload, making it challenging for users to extract meaningful insights. Traditional opinion summarization models face challenges in handling long inputs and large volumes of reviews, while newer Large Language Model (LLM) approaches often fail to generate accurate and faithful summaries. To address those challenges, this paper introduces (1) a new dataset of long-form user reviews, each entity comprising over a thousand reviews, (2) two training-free LLM-based summarization approaches that scale to long inputs, and (3) automatic evaluation metrics. Our dataset of user reviews is paired with in-depth and unbiased critical summaries by domain experts, serving as a reference for evaluation. Additionally, our novel reference-free evaluation metrics provide a more granular, context-sensitive assessment of summary faithfulness. We benchmark several open-source and closed-source LLMs using our methods. Our evaluation reveals that LLMs still face challenges in balancing sentiment and format adherence in long-form summaries, though open-source models can narrow the gap when relevant information is retrieved in a focused manner.
Abstract:Recent studies highlight the potential of large language models in creating educational tools for children, yet significant challenges remain in maintaining key child-specific properties such as linguistic nuances, cognitive needs, and safety standards. In this paper, we explore foundational steps toward the development of child-specific language models, emphasizing the necessity of high-quality pre-training data. We introduce a novel user-centric data collection pipeline that involves gathering and validating a corpus specifically written for and sometimes by children. Additionally, we propose a new training objective, Stratified Masking, which dynamically adjusts masking probabilities based on our domain-specific child language data, enabling models to prioritize vocabulary and concepts more suitable for children. Experimental evaluations demonstrate that our model excels in understanding lower grade-level text, maintains safety by avoiding stereotypes, and captures children's unique preferences. Furthermore, we provide actionable insights for future research and development in child-specific language modeling.
Abstract:In recent years, Large Language Models (LLMs) have demonstrated remarkable capabilities in parsing textual data and generating code. However, their performance in tasks involving tabular data, especially those requiring symbolic reasoning, faces challenges due to the structural variance and inconsistency in table cell values often found in web tables. In this paper, we introduce NormTab, a novel framework aimed at enhancing the symbolic reasoning performance of LLMs by normalizing web tables. We study table normalization as a stand-alone, one-time preprocessing step using LLMs to support symbolic reasoning on tabular data. Our experimental evaluation, conducted on challenging web table datasets such as WikiTableQuestion and TabFact, demonstrates that leveraging NormTab significantly improves symbolic reasoning performance, showcasing the importance and effectiveness of web table normalization for enhancing LLM-based symbolic reasoning tasks.
Abstract:Table reasoning is a challenging task that requires understanding both natural language questions and structured tabular data. Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation, but they often struggle with large tables due to their limited input length. In this paper, we propose TabSQLify, a novel method that leverages text-to-SQL generation to decompose tables into smaller and relevant sub-tables, containing only essential information for answering questions or verifying statements, before performing the reasoning task. In our comprehensive evaluation on four challenging datasets, our approach demonstrates comparable or superior performance compared to prevailing methods reliant on full tables as input. Moreover, our method can reduce the input context length significantly, making it more scalable and efficient for large-scale table reasoning applications. Our method performs remarkably well on the WikiTQ benchmark, achieving an accuracy of 64.7%. Additionally, on the TabFact benchmark, it achieves a high accuracy of 79.5%. These results surpass other LLM-based baseline models on gpt-3.5-turbo (chatgpt). TabSQLify can reduce the table size significantly alleviating the computational load on LLMs when handling large tables without compromising performance.
Abstract:Detecting structural similarity between queries is essential for selecting examples in in-context learning models. However, assessing structural similarity based solely on the natural language expressions of queries, without considering SQL queries, presents a significant challenge. This paper explores the significance of this similarity metric and proposes a model for accurately estimating it. To achieve this, we leverage a dataset comprising 170k question pairs, meticulously curated to train a similarity prediction model. Our comprehensive evaluation demonstrates that the proposed model adeptly captures the structural similarity between questions, as evidenced by improvements in Kendall-Tau distance and precision@k metrics. Notably, our model outperforms strong competitive embedding models from OpenAI and Cohere. Furthermore, compared to these competitive models, our proposed encoder enhances the downstream performance of NL2SQL models in 1-shot in-context learning scenarios by 1-2\% for GPT-3.5-turbo, 4-8\% for CodeLlama-7B, and 2-3\% for CodeLlama-13B.