Abstract:The considerable body of data available for evaluating biometric recognition systems in Research and Development (R\&D) environments has contributed to the increasingly common problem of target performance mismatch. Biometric algorithms are frequently tested against data that may not reflect the real world applications they target. From a Testing and Evaluation (T\&E) standpoint, this domain mismatch causes difficulty assessing when improvements in State-of-the-Art (SOTA) research actually translate to improved applied outcomes. This problem can be addressed with thoughtful preparation of data and experimental methods to reflect specific use-cases and scenarios. To that end, this paper evaluates research solutions for identifying individuals at ranges and altitudes, which could support various application areas such as counterterrorism, protection of critical infrastructure facilities, military force protection, and border security. We address challenges including image quality issues and reliance on face recognition as the sole biometric modality. By fusing face and body features, we propose developing robust biometric systems for effective long-range identification from both the ground and steep pitch angles. Preliminary results show promising progress in whole-body recognition. This paper presents these early findings and discusses potential future directions for advancing long-range biometric identification systems based on mission-driven metrics.
Abstract:This paper examines covariate effects on fused whole body biometrics performance in the IARPA BRIAR dataset, specifically focusing on UAV platforms, elevated positions, and distances up to 1000 meters. The dataset includes outdoor videos compared with indoor images and controlled gait recordings. Normalized raw fusion scores relate directly to predicted false accept rates (FAR), offering an intuitive means for interpreting model results. A linear model is developed to predict biometric algorithm scores, analyzing their performance to identify the most influential covariates on accuracy at altitude and range. Weather factors like temperature, wind speed, solar loading, and turbulence are also investigated in this analysis. The study found that resolution and camera distance best predicted accuracy and findings can guide future research and development efforts in long-range/elevated/UAV biometrics and support the creation of more reliable and robust systems for national security and other critical domains.
Abstract:Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Abstract:Face recognition of vehicle occupants through windshields in unconstrained environments poses a number of unique challenges ranging from glare, poor illumination, driver pose and motion blur. In this paper, we further develop the hardware and software components of a custom vehicle imaging system to better overcome these challenges. After the build out of a physical prototype system that performs High Dynamic Range (HDR) imaging, we collect a small dataset of through-windshield image captures of known drivers. We then re-formulate the classical Mertens-Kautz-Van Reeth HDR fusion algorithm as a pre-initialized neural network, which we name the Mertens Unrolled Network (MU-Net), for the purpose of fine-tuning the HDR output of through-windshield images. Reconstructed faces from this novel HDR method are then evaluated and compared against other traditional and experimental HDR methods in a pre-trained state-of-the-art (SOTA) facial recognition pipeline, verifying the efficacy of our approach.
Abstract:Face de-identification algorithms have been developed in response to the prevalent use of public video recordings and surveillance cameras. Here, we evaluated the success of identity masking in the context of monitoring drivers as they actively operate a motor vehicle. We compared the effectiveness of eight de-identification algorithms using human perceivers. The algorithms we tested included the personalized supervised bilinear regression method for Facial Action Transfer (FAT), the DMask method, which renders a generic avatar face, and two edge-detection methods implemented with and without image polarity inversion (Canny, Scharr). We also used an Overmask approach that combined the FAT and Canny methods. We compared these identity masking methods to identification of an unmasked video of the driver. Human subjects were tested in a standard face recognition experiment in which they learned driver identities with a high resolution (studio-style) image, and were tested subsequently on their ability to recognize masked and unmasked videos of these individuals driving. All masking methods lowered identification accuracy substantially, relative to the unmasked video. The most successful methods, DMask and Canny, lowered human identification performance to near random. In all cases, identifications were made with stringent decision criteria indicating the subjects had low confidence in their decisions. We conclude that carefully tested de-identification approaches, used alone or in combination, can be an effective tool for protecting the privacy of individuals captured in videos. Future work should examine how the most effective methods fare in preserving facial action recognition.