Abstract:Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
Abstract:Face de-identification algorithms have been developed in response to the prevalent use of public video recordings and surveillance cameras. Here, we evaluated the success of identity masking in the context of monitoring drivers as they actively operate a motor vehicle. We compared the effectiveness of eight de-identification algorithms using human perceivers. The algorithms we tested included the personalized supervised bilinear regression method for Facial Action Transfer (FAT), the DMask method, which renders a generic avatar face, and two edge-detection methods implemented with and without image polarity inversion (Canny, Scharr). We also used an Overmask approach that combined the FAT and Canny methods. We compared these identity masking methods to identification of an unmasked video of the driver. Human subjects were tested in a standard face recognition experiment in which they learned driver identities with a high resolution (studio-style) image, and were tested subsequently on their ability to recognize masked and unmasked videos of these individuals driving. All masking methods lowered identification accuracy substantially, relative to the unmasked video. The most successful methods, DMask and Canny, lowered human identification performance to near random. In all cases, identifications were made with stringent decision criteria indicating the subjects had low confidence in their decisions. We conclude that carefully tested de-identification approaches, used alone or in combination, can be an effective tool for protecting the privacy of individuals captured in videos. Future work should examine how the most effective methods fare in preserving facial action recognition.