Abstract:We present BenCzechMark (BCM), the first comprehensive Czech language benchmark designed for large language models, offering diverse tasks, multiple task formats, and multiple evaluation metrics. Its scoring system is grounded in statistical significance theory and uses aggregation across tasks inspired by social preference theory. Our benchmark encompasses 50 challenging tasks, with corresponding test datasets, primarily in native Czech, with 11 newly collected ones. These tasks span 8 categories and cover diverse domains, including historical Czech news, essays from pupils or language learners, and spoken word. Furthermore, we collect and clean BUT-Large Czech Collection, the largest publicly available clean Czech language corpus, and use it for (i) contamination analysis, (ii) continuous pretraining of the first Czech-centric 7B language model, with Czech-specific tokenization. We use our model as a baseline for comparison with publicly available multilingual models. Lastly, we release and maintain a leaderboard, with existing 44 model submissions, where new model submissions can be made at https://huggingface.co/spaces/CZLC/BenCzechMark.
Abstract:Data shift is a gap between data distribution used for training and data distribution encountered in the real-world. Data augmentations help narrow the gap by generating new data samples, increasing data variability, and data space coverage. We present a new data augmentation: Unproportional mosaicing (Unprop). Our augmentation randomly splits an image into various-sized blocks and swaps its content (pixels) while maintaining block sizes. Our method achieves a lower error rate when combined with other state-of-the-art augmentations.