Abstract:Data poisoning attacks on clustering algorithms have received limited attention, with existing methods struggling to scale efficiently as dataset sizes and feature counts increase. These attacks typically require re-clustering the entire dataset multiple times to generate predictions and assess the attacker's objectives, significantly hindering their scalability. This paper addresses these limitations by proposing Sonic, a novel genetic data poisoning attack that leverages incremental and scalable clustering algorithms, e.g., FISHDBC, as surrogates to accelerate poisoning attacks against graph-based and density-based clustering methods, such as HDBSCAN. We empirically demonstrate the effectiveness and efficiency of Sonic in poisoning the target clustering algorithms. We then conduct a comprehensive analysis of the factors affecting the scalability and transferability of poisoning attacks against clustering algorithms, and we conclude by examining the robustness of hyperparameters in our attack strategy Sonic.
Abstract:Deep learning models undergo a significant increase in the number of parameters they possess, leading to the execution of a larger number of operations during inference. This expansion significantly contributes to higher energy consumption and prediction latency. In this work, we propose EAT, a gradient-based algorithm that aims to reduce energy consumption during model training. To this end, we leverage a differentiable approximation of the $\ell_0$ norm, and use it as a sparse penalty over the training loss. Through our experimental analysis conducted on three datasets and two deep neural networks, we demonstrate that our energy-aware training algorithm EAT is able to train networks with a better trade-off between classification performance and energy efficiency.