Abstract:Diffeomorphic image registration is crucial for various medical imaging applications because it can preserve the topology of the transformation. This study introduces DCCNN-LSTM-Reg, a learning framework that evolves dynamically and learns a symmetrical registration path by satisfying a specified control increment system. This framework aims to obtain symmetric diffeomorphic deformations between moving and fixed images. To achieve this, we combine deep learning networks with diffeomorphic mathematical mechanisms to create a continuous and dynamic registration architecture, which consists of multiple Symmetric Registration (SR) modules cascaded on five different scales. Specifically, our method first uses two U-nets with shared parameters to extract multiscale feature pyramids from the images. We then develop an SR-module comprising a sequential CNN-LSTM architecture to progressively correct the forward and reverse multiscale deformation fields using control increment learning and the homotopy continuation technique. Through extensive experiments on three 3D registration tasks, we demonstrate that our method outperforms existing approaches in both quantitative and qualitative evaluations.
Abstract:Image segmentation plays a crucial role in extracting important objects of interest from images, enabling various applications. While existing methods have shown success in segmenting clean images, they often struggle to produce accurate segmentation results when dealing with degraded images, such as those containing noise or occlusions. To address this challenge, interactive segmentation has emerged as a promising approach, allowing users to provide meaningful input to guide the segmentation process. However, an important problem in interactive segmentation lies in determining how to incorporate minimal yet meaningful user guidance into the segmentation model. In this paper, we propose the quasi-conformal interactive segmentation (QIS) model, which incorporates user input in the form of positive and negative clicks. Users mark a few pixels belonging to the object region as positive clicks, indicating that the segmentation model should include a region around these clicks. Conversely, negative clicks are provided on pixels belonging to the background, instructing the model to exclude the region near these clicks from the segmentation mask. Additionally, the segmentation mask is obtained by deforming a template mask with the same topology as the object of interest using an orientation-preserving quasiconformal mapping. This approach helps to avoid topological errors in the segmentation results. We provide a thorough analysis of the proposed model, including theoretical support for the ability of QIS to include or exclude regions of interest or disinterest based on the user's indication. To evaluate the performance of QIS, we conduct experiments on synthesized images, medical images, natural images and noisy natural images. The results demonstrate the efficacy of our proposed method.
Abstract:With the advancement of computer technology, there is a surge of interest in effective mapping methods for objects in higher-dimensional spaces. To establish a one-to-one correspondence between objects, higher-dimensional quasi-conformal theory can be utilized for ensuring the bijectivity of the mappings. In addition, it is often desirable for the mappings to satisfy certain prescribed geometric constraints and possess low distortion in conformality or volume. In this work, we develop a unifying framework for computing $n$-dimensional quasi-conformal mappings. More specifically, we propose a variational model that integrates quasi-conformal distortion, volumetric distortion, landmark correspondence, intensity mismatch and volume prior information to handle a large variety of deformation problems. We further prove the existence of a minimizer for the proposed model and devise efficient numerical methods to solve the optimization problem. We demonstrate the effectiveness of the proposed framework using various experiments in two- and three-dimensions, with applications to medical image registration, adaptive remeshing and shape modeling.
Abstract:Image segmentation is to extract meaningful objects from a given image. For degraded images due to occlusions, obscurities or noises, the accuracy of the segmentation result can be severely affected. To alleviate this problem, prior information about the target object is usually introduced. In [10], a topology-preserving registration-based segmentation model was proposed, which is restricted to segment 2D images only. In this paper, we propose a novel 3D topology-preserving registration-based segmentation model with the hyperelastic regularization, which can handle both 2D and 3D images. The existence of the solution of the proposed model is established. We also propose a converging iterative scheme to solve the proposed model. Numerical experiments have been carried out on the synthetic and real images, which demonstrate the effectiveness of our proposed model.