Abstract:In this paper, the problem of vehicle service mode selection (sensing, communication, or both) and vehicle connections within terahertz (THz) enabled joint sensing and communications over vehicular networks is studied. The considered network consists of several service provider vehicles (SPVs) that can provide: 1) only sensing service, 2) only communication service, and 3) both services, sensing service request vehicles, and communication service request vehicles. Based on the vehicle network topology and their service accessibility, SPVs strategically select service request vehicles to provide sensing, communication, or both services. This problem is formulated as an optimization problem, aiming to maximize the number of successfully served vehicles by jointly determining the service mode of each SPV and its associated vehicles. To solve this problem, we propose a dynamic graph neural network (GNN) model that selects appropriate graph information aggregation functions according to the vehicle network topology, thus extracting more vehicle network information compared to traditional static GNNs that use fixed aggregation functions for different vehicle network topologies. Using the extracted vehicle network information, the service mode of each SPV and its served service request vehicles will be determined. Simulation results show that the proposed dynamic GNN based method can improve the number of successfully served vehicles by up to 17% and 28% compared to a GNN based algorithm with a fixed neural network model and a conventional optimization algorithm without using GNNs.
Abstract:In this paper, the problem of maximizing the sum of data rates of all users in an intelligent reflecting surface (IRS)-assisted millimeter wave multicast multiple-input multiple-output communication system is studied. In the considered model, one IRS is deployed to assist the communication from a multiantenna base station (BS) to the multi-antenna users that are clustered into several groups. Our goal is to maximize the sum rate of all users by jointly optimizing the transmit beamforming matrices of the BS, the receive beamforming matrices of the users, and the phase shifts of the IRS. To solve this non-convex problem, we first use a block diagonalization method to represent the beamforming matrices of the BS and the users by the phase shifts of the IRS. Then, substituting the expressions of the beamforming matrices of the BS and the users, the original sum-rate maximization problem can be transformed into a problem that only needs to optimize the phase shifts of the IRS. To solve the transformed problem, a manifold method is used. Simulation results show that the proposed scheme can achieve up to 28.6% gain in terms of the sum rate of all users compared to the algorithm that optimizes the hybrid beamforming matrices of the BS and the users using our proposed scheme and randomly determines the phase shifts of the IRS.