Abstract:The Internet of Things (IoT) is an extension of the traditional Internet, which allows a very large number of smart devices, such as home appliances, network cameras, sensors and controllers to connect to one another to share information and improve user experiences. Current IoT devices are typically micro-computers for domain-specific computations rather than traditional functionspecific embedded devices. Therefore, many existing attacks, targeted at traditional computers connected to the Internet, may also be directed at IoT devices. For example, DDoS attacks have become very common in IoT environments, as these environments currently lack basic security monitoring and protection mechanisms, as shown by the recent Mirai and Brickerbot IoT botnets. In this paper, we propose a novel light-weight approach for detecting DDos malware in IoT environments.We firstly extract one-channel gray-scale images converted from binaries, and then utilize a lightweight convolutional neural network for classifying IoT malware families. The experimental results show that the proposed system can achieve 94.0% accuracy for the classification of goodware and DDoS malware, and 81.8% accuracy for the classification of goodware and two main malware families.
Abstract:Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.
Abstract:Attack graphs provide compact representations of the attack paths that an attacker can follow to compromise network resources by analysing network vulnerabilities and topology. These representations are a powerful tool for security risk assessment. Bayesian inference on attack graphs enables the estimation of the risk of compromise to the system's components given their vulnerabilities and interconnections, and accounts for multi-step attacks spreading through the system. Whilst static analysis considers the risk posture at rest, dynamic analysis also accounts for evidence of compromise, e.g. from SIEM software or forensic investigation. However, in this context, exact Bayesian inference techniques do not scale well. In this paper we show how Loopy Belief Propagation - an approximate inference technique - can be applied to attack graphs, and that it scales linearly in the number of nodes for both static and dynamic analysis, making such analyses viable for larger networks. We experiment with different topologies and network clustering on synthetic Bayesian attack graphs with thousands of nodes to show that the algorithm's accuracy is acceptable and converge to a stable solution. We compare sequential and parallel versions of Loopy Belief Propagation with exact inference techniques for both static and dynamic analysis, showing the advantages of approximate inference techniques to scale to larger attack graphs.