Abstract:Automatic generation of discharge summaries presents significant challenges due to the length of clinical documentation, the dispersed nature of patient information, and the diverse terminology used in healthcare. This paper presents a hybrid solution for generating discharge summary sections as part of our participation in the "Discharge Me!" Challenge at the BioNLP 2024 Shared Task. We developed a two-stage generation method using both extractive and abstractive techniques, in which we first apply name entity recognition (NER) to extract key clinical concepts, which are then used as input for a prompt-tuning-based GatorTronGPT model to generate coherent text for two important sections including "Brief Hospital Course" and "Discharge Instructions". Our system was ranked 5th in this challenge, achieving an overall score of 0.284. The results demonstrate the effectiveness of our hybrid solution in improving the quality of automated discharge section generation.
Abstract:The ultrasound characteristics of thyroid nodules guide the evaluation of thyroid cancer in patients with thyroid nodules. However, the characteristics of thyroid nodules are often documented in clinical narratives such as ultrasound reports. Previous studies have examined natural language processing (NLP) methods in extracting a limited number of characteristics (<9) using rule-based NLP systems. In this study, a multidisciplinary team of NLP experts and thyroid specialists, identified thyroid nodule characteristics that are important for clinical care, composed annotation guidelines, developed a corpus, and compared 5 state-of-the-art transformer-based NLP methods, including BERT, RoBERTa, LongFormer, DeBERTa, and GatorTron, for extraction of thyroid nodule characteristics from ultrasound reports. Our GatorTron model, a transformer-based large language model trained using over 90 billion words of text, achieved the best strict and lenient F1-score of 0.8851 and 0.9495 for the extraction of a total number of 16 thyroid nodule characteristics, and 0.9321 for linking characteristics to nodules, outperforming other clinical transformer models. To the best of our knowledge, this is the first study to systematically categorize and apply transformer-based NLP models to extract a large number of clinical relevant thyroid nodule characteristics from ultrasound reports. This study lays ground for assessing the documentation quality of thyroid ultrasound reports and examining outcomes of patients with thyroid nodules using electronic health records.
Abstract:Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.