Abstract:Text-conditioned image generation models often generate incorrect associations between entities and their visual attributes. This reflects an impaired mapping between linguistic binding of entities and modifiers in the prompt and visual binding of the corresponding elements in the generated image. As one notable example, a query like ``a pink sunflower and a yellow flamingo'' may incorrectly produce an image of a yellow sunflower and a pink flamingo. To remedy this issue, we propose SynGen, an approach which first syntactically analyses the prompt to identify entities and their modifiers, and then uses a novel loss function that encourages the cross-attention maps to agree with the linguistic binding reflected by the syntax. Specifically, we encourage large overlap between attention maps of entities and their modifiers, and small overlap with other entities and modifier words. The loss is optimized during inference, without retraining or fine-tuning the model. Human evaluation on three datasets, including one new and challenging set, demonstrate significant improvements of SynGen compared with current state of the art methods. This work highlights how making use of sentence structure during inference can efficiently and substantially improve the faithfulness of text-to-image generation.
Abstract:The dominant paradigm for machine learning on graphs uses Message Passing Graph Neural Networks (MP-GNNs), in which node representations are updated by aggregating information in their local neighborhood. Recently, there have been increasingly more attempts to adapt the Transformer architecture to graphs in an effort to solve some known limitations of MP-GNN. A challenging aspect of designing Graph Transformers is integrating the arbitrary graph structure into the architecture. We propose Graph Diffuser (GD) to address this challenge. GD learns to extract structural and positional relationships between distant nodes in the graph, which it then uses to direct the Transformer's attention and node representation. We demonstrate that existing GNNs and Graph Transformers struggle to capture long-range interactions and how Graph Diffuser does so while admitting intuitive visualizations. Experiments on eight benchmarks show Graph Diffuser to be a highly competitive model, outperforming the state-of-the-art in a diverse set of domains.