Abstract:Large Language Models (LLMs) are powerful tools with extensive applications, but their tendency to memorize private information raises significant concerns as private data leakage can easily happen. In this paper, we introduce Private Association Editing (PAE), a novel defense approach for private data leakage. PAE is designed to effectively remove Personally Identifiable Information (PII) without retraining the model. Our approach consists of a four-step procedure: detecting memorized PII, applying PAE cards to mitigate memorization of private data, verifying resilience to targeted data extraction (TDE) attacks, and ensuring consistency in the post-edit LLMs. The versatility and efficiency of PAE, which allows for batch modifications, significantly enhance data privacy in LLMs. Experimental results demonstrate the effectiveness of PAE in mitigating private data leakage. We believe PAE will serve as a critical tool in the ongoing effort to protect data privacy in LLMs, encouraging the development of safer models for real-world applications.
Abstract:Understanding textual description to generate code seems to be an achieved capability of instruction-following Large Language Models (LLMs) in zero-shot scenario. However, there is a severe possibility that this translation ability may be influenced by having seen target textual descriptions and the related code. This effect is known as Data Contamination. In this study, we investigate the impact of Data Contamination on the performance of GPT-3.5 in the Text-to-SQL code-generating tasks. Hence, we introduce a novel method to detect Data Contamination in GPTs and examine GPT-3.5's Text-to-SQL performances using the known Spider Dataset and our new unfamiliar dataset Termite. Furthermore, we analyze GPT-3.5's efficacy on databases with modified information via an adversarial table disconnection (ATD) approach, complicating Text-to-SQL tasks by removing structural pieces of information from the database. Our results indicate a significant performance drop in GPT-3.5 on the unfamiliar Termite dataset, even with ATD modifications, highlighting the effect of Data Contamination on LLMs in Text-to-SQL translation tasks.
Abstract:Incorporating explicit domain knowledge into neural-based task-oriented dialogue systems is an effective way to reduce the need of large sets of annotated dialogues. In this paper, we investigate how the use of explicit domain knowledge of conversational designers affects the performance of neural-based dialogue systems. To support this investigation, we propose the Conversational-Logic-Injection-in-Neural-Network system (CLINN) where explicit knowledge is coded in semi-logical rules. By using CLINN, we evaluated semi-logical rules produced by a team of differently skilled conversational designers. We experimented with the Restaurant topic of the MultiWOZ dataset. Results show that external knowledge is extremely important for reducing the need of annotated examples for conversational systems. In fact, rules from conversational designers used in CLINN significantly outperform a state-of-the-art neural-based dialogue system.