Abstract:Large Language Models (LLMs) are powerful tools with extensive applications, but their tendency to memorize private information raises significant concerns as private data leakage can easily happen. In this paper, we introduce Private Association Editing (PAE), a novel defense approach for private data leakage. PAE is designed to effectively remove Personally Identifiable Information (PII) without retraining the model. Our approach consists of a four-step procedure: detecting memorized PII, applying PAE cards to mitigate memorization of private data, verifying resilience to targeted data extraction (TDE) attacks, and ensuring consistency in the post-edit LLMs. The versatility and efficiency of PAE, which allows for batch modifications, significantly enhance data privacy in LLMs. Experimental results demonstrate the effectiveness of PAE in mitigating private data leakage. We believe PAE will serve as a critical tool in the ongoing effort to protect data privacy in LLMs, encouraging the development of safer models for real-world applications.
Abstract:Incorporating explicit domain knowledge into neural-based task-oriented dialogue systems is an effective way to reduce the need of large sets of annotated dialogues. In this paper, we investigate how the use of explicit domain knowledge of conversational designers affects the performance of neural-based dialogue systems. To support this investigation, we propose the Conversational-Logic-Injection-in-Neural-Network system (CLINN) where explicit knowledge is coded in semi-logical rules. By using CLINN, we evaluated semi-logical rules produced by a team of differently skilled conversational designers. We experimented with the Restaurant topic of the MultiWOZ dataset. Results show that external knowledge is extremely important for reducing the need of annotated examples for conversational systems. In fact, rules from conversational designers used in CLINN significantly outperform a state-of-the-art neural-based dialogue system.