Abstract:Graph neural networks (GNN) have emerged as a popular tool for modelling functional magnetic resonance imaging (fMRI) datasets. Many recent studies have reported significant improvements in disorder classification performance via more sophisticated GNN designs and highlighted salient features that could be potential biomarkers of the disorder. In this review, we provide an overview of how GNN and model explainability techniques have been applied on fMRI datasets for disorder prediction tasks, with a particular emphasis on the robustness of biomarkers produced for neurodegenerative diseases and neuropsychiatric disorders. We found that while most studies have performant models, salient features highlighted in these studies vary greatly across studies on the same disorder and little has been done to evaluate their robustness. To address these issues, we suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of these potential biomarkers. We further highlight gaps in the existing literature and put together a prediction-attribution-evaluation framework that could set the foundations for future research on improving the robustness of potential biomarkers discovered via GNNs.
Abstract:It remains challenging to automatically predict the multi-agent trajectory due to multiple interactions including agent to agent interaction and scene to agent interaction. Although recent methods have achieved promising performance, most of them just consider spatial influence of the interactions and ignore the fact that temporal influence always accompanies spatial influence. Moreover, those methods based on scene information always require extra segmented scene images to generate multiple socially acceptable trajectories. To solve these limitations, we propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC). First, spatial-temporal attention mechanism is presented to explore the most useful and important information. Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity. Experiments are performed on the two widely used ETH-UCY datasets and demonstrate that the proposed model achieves state-of-the-art prediction accuracy and handles more complex scenarios.