Abstract:Accurate and robust prediction of drug-target interactions (DTIs) plays a vital role in drug discovery. Despite extensive efforts have been invested in predicting novel DTIs, existing approaches still suffer from insufficient labeled data and cold start problems. More importantly, there is currently a lack of studies focusing on elucidating the mechanism of action (MoA) between drugs and targets. Distinguishing the activation and inhibition mechanisms is critical and challenging in drug development. Here, we introduce a unified framework called DTIAM, which aims to predict interactions, binding affinities, and activation/inhibition mechanisms between drugs and targets. DTIAM learns drug and target representations from large amounts of label-free data through self-supervised pre-training, which accurately extracts the substructure and contextual information of drugs and targets, and thus benefits the downstream prediction based on these representations. DTIAM achieves substantial performance improvement over other state-of-the-art methods in all tasks, particularly in the cold start scenario. Moreover, independent validation demonstrates the strong generalization ability of DTIAM. All these results suggested that DTIAM can provide a practically useful tool for predicting novel DTIs and further distinguishing the MoA of candidate drugs. DTIAM, for the first time, provides a unified framework for accurate and robust prediction of drug-target interactions, binding affinities, and activation/inhibition mechanisms.
Abstract:Human leukocyte antigen (HLA) is an important molecule family in the field of human immunity, which recognizes foreign threats and triggers immune responses by presenting peptides to T cells. In recent years, the synthesis of tumor vaccines to induce specific immune responses has become the forefront of cancer treatment. Computationally modeling the binding patterns between peptide and HLA can greatly accelerate the development of tumor vaccines. However, most of the prediction methods performance is very limited and they cannot fully take advantage of the analysis of existing biological knowledge as the basis of modeling. In this paper, we propose TripHLApan, a novel pan-specific prediction model, for HLA molecular peptide binding prediction. TripHLApan exhibits powerful prediction ability by integrating triple coding matrix, BiGRU + Attention models, and transfer learning strategy. The comprehensive evaluations demonstrate the effectiveness of TripHLApan in predicting HLA-I and HLA-II peptide binding in different test environments. The predictive power of HLA-I is further demonstrated in the latest data set. In addition, we show that TripHLApan has strong binding reconstitution ability in the samples of a melanoma patient. In conclusion, TripHLApan is a powerful tool for predicting the binding of HLA-I and HLA-II molecular peptides for the synthesis of tumor vaccines.