Abstract:Learning and forecasting stochastic time series is essential in various scientific fields. However, despite the proposals of nonlinear filters and deep-learning methods, it remains challenging to capture nonlinear dynamics from a few noisy samples and predict future trajectories with uncertainty estimates while maintaining computational efficiency. Here, we propose a fast algorithm to learn and forecast nonlinear dynamics from noisy time series data. A key feature of the proposed model is kernel functions applied to projected lines, enabling fast and efficient capture of nonlinearities in the latent dynamics. Through empirical case studies and benchmarking, the model demonstrates its effectiveness in learning and forecasting complex nonlinear dynamics, offering a valuable tool for researchers and practitioners in time series analysis.
Abstract:We propose a new scalable multi-class Gaussian process classification approach building on a novel modified softmax likelihood function. The new likelihood has two benefits: it leads to well-calibrated uncertainty estimates and allows for an efficient latent variable augmentation. The augmented model has the advantage that it is conditionally conjugate leading to a fast variational inference method via block coordinate ascent updates. Previous approaches suffered from a trade-off between uncertainty calibration and speed. Our experiments show that our method leads to well-calibrated uncertainty estimates and competitive predictive performance while being up to two orders faster than the state of the art.
Abstract:We present an approximate Bayesian inference approach for estimating the intensity of a inhomogeneous Poisson process, where the intensity function is modelled using a Gaussian process (GP) prior via a sigmoid link function. Augmenting the model using a latent marked Poisson process and P\'olya--Gamma random variables we obtain a representation of the likelihood which is conjugate to the GP prior. We approximate the posterior using a free--form mean field approximation together with the framework of sparse GPs. Furthermore, as alternative approximation we suggest a sparse Laplace approximation of the posterior, for which an efficient expectation--maximisation algorithm is derived to find the posterior's mode. Results of both algorithms compare well with exact inference obtained by a Markov Chain Monte Carlo sampler and standard variational Gauss approach, while being one order of magnitude faster.
Abstract:We reconsider a nonparametric density model based on Gaussian processes. By augmenting the model with latent P\'olya--Gamma random variables and a latent marked Poisson process we obtain a new likelihood which is conjugate to the model's Gaussian process prior. The augmented posterior allows for efficient inference by Gibbs sampling and an approximate variational mean field approach. For the latter we utilise sparse GP approximations to tackle the infinite dimensionality of the problem. The performance of both algorithms and comparisons with other density estimators are demonstrated on artificial and real datasets with up to several thousand data points.
Abstract:We consider the inverse Ising problem, i.e. the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form, which allows for simple iterative inference algorithms with analytical updates. The variables are: (1) Poisson variables to linearise an exponential term which is typical for point process likelihoods and (2) P\'olya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.