Abstract:Federated learning (FL), as an emerging artificial intelligence (AI) approach, enables decentralized model training across multiple devices without exposing their local training data. FL has been increasingly gaining popularity in both academia and industry. While research works have been proposed to improve the fault tolerance of FL, the real impact of unreliable devices (e.g., dropping out, misconfiguration, poor data quality) in real-world applications is not fully investigated. We carefully chose two representative, real-world classification problems with a limited numbers of clients to better analyze FL fault tolerance. Contrary to the intuition, simple FL algorithms can perform surprisingly well in the presence of unreliable clients.
Abstract:Imaging nanoscale features using transmission electron microscopy is key to predicting and assessing the mechanical behavior of structural materials in nuclear reactors. Analyzing these micrographs is often a tedious and time-consuming manual process, making this analysis is a prime candidate for automation. A region-based convolutional neural network is proposed, which can identify helium bubbles in neutron-irradiated Inconel X-750 reactor spacer springs. We demonstrate that this neural network produces analyses of similar accuracy and reproducibility than that produced by humans. Further, we show this method as being four orders of magnitude faster than manual analysis allowing for generation of significant quantities of data. The proposed method can be used with micrographs of different Fresnel contrasts and resolutions and shows promise in application across multiple defect types.