Abstract:In this paper we present a novel method for efficient and effective 3D surface reconstruction in open scenes. Existing Neural Radiance Fields (NeRF) based works typically require extensive training and rendering time due to the adopted implicit representations. In contrast, 3D Gaussian splatting (3DGS) uses an explicit and discrete representation, hence the reconstructed surface is built by the huge number of Gaussian primitives, which leads to excessive memory consumption and rough surface details in sparse Gaussian areas. To address these issues, we propose Gaussian Voxel Kernel Functions (GVKF), which establish a continuous scene representation based on discrete 3DGS through kernel regression. The GVKF integrates fast 3DGS rasterization and highly effective scene implicit representations, achieving high-fidelity open scene surface reconstruction. Experiments on challenging scene datasets demonstrate the efficiency and effectiveness of our proposed GVKF, featuring with high reconstruction quality, real-time rendering speed, significant savings in storage and training memory consumption.
Abstract:In recent years, reinforcement learning and imitation learning have shown great potential for controlling humanoid robots' motion. However, these methods typically create simulation environments and rewards for specific tasks, resulting in the requirements of multiple policies and limited capabilities for tackling complex and unknown tasks. To overcome these issues, we present a novel approach that combines adversarial imitation learning with large language models (LLMs). This innovative method enables the agent to learn reusable skills with a single policy and solve zero-shot tasks under the guidance of LLMs. In particular, we utilize the LLM as a strategic planner for applying previously learned skills to novel tasks through the comprehension of task-specific prompts. This empowers the robot to perform the specified actions in a sequence. To improve our model, we incorporate codebook-based vector quantization, allowing the agent to generate suitable actions in response to unseen textual commands from LLMs. Furthermore, we design general reward functions that consider the distinct motion features of humanoid robots, ensuring the agent imitates the motion data while maintaining goal orientation without additional guiding direction approaches or policies. To the best of our knowledge, this is the first framework that controls humanoid robots using a single learning policy network and LLM as a planner. Extensive experiments demonstrate that our method exhibits efficient and adaptive ability in complicated motion tasks.