Abstract:We study low-rank matrix trace regression and the related problem of low-rank matrix bandits. Assuming access to the distribution of the covariates, we propose a novel low-rank matrix estimation method called LowPopArt and provide its recovery guarantee that depends on a novel quantity denoted by B(Q) that characterizes the hardness of the problem, where Q is the covariance matrix of the measurement distribution. We show that our method can provide tighter recovery guarantees than classical nuclear norm penalized least squares (Koltchinskii et al., 2011) in several problems. To perform efficient estimation with a limited number of measurements from an arbitrarily given measurement set A, we also propose a novel experimental design criterion that minimizes B(Q) with computational efficiency. We leverage our novel estimator and design of experiments to derive two low-rank linear bandit algorithms for general arm sets that enjoy improved regret upper bounds. This improves over previous works on low-rank bandits, which make somewhat restrictive assumptions that the arm set is the unit ball or that an efficient exploration distribution is given. To our knowledge, our experimental design criterion is the first one tailored to low-rank matrix estimation beyond the naive reduction to linear regression, which can be of independent interest.
Abstract:We study interactive imitation learning, where a learner interactively queries a demonstrating expert for action annotations, aiming to learn a policy that has performance competitive with the expert, using as few annotations as possible. We give an algorithmic framework named Ensemble-based Interactive Imitation Learning (EIIL) that achieves this goal. Theoretically, we prove that an oracle-efficient version of EIIL achieves sharp regret guarantee, given access to samples from some ``explorative'' distribution over states. Empirically, EIIL notably surpasses online and offline imitation learning benchmarks in continuous control tasks. Our work opens up systematic investigations on the benefit of using model ensembles for interactive imitation learning.
Abstract:We study the problem of computationally and label efficient PAC active learning $d$-dimensional halfspaces with Tsybakov Noise~\citep{tsybakov2004optimal} under structured unlabeled data distributions. Inspired by~\cite{diakonikolas2020learning}, we prove that any approximate first-order stationary point of a smooth nonconvex loss function yields a halfspace with a low excess error guarantee. In light of the above structural result, we design a nonconvex optimization-based algorithm with a label complexity of $\tilde{O}(d (\frac{1}{\epsilon})^{\frac{8-6\alpha}{3\alpha-1}})$\footnote{In the main body of this work, we use $\tilde{O}(\cdot), \tilde{\Theta}(\cdot)$ to hide factors of the form $\polylog(d, \frac{1}{\epsilon}, \frac{1}{\delta})$}, under the assumption that the Tsybakov noise parameter $\alpha \in (\frac13, 1]$, which narrows down the gap between the label complexities of the previously known efficient passive or active algorithms~\citep{diakonikolas2020polynomial,zhang2021improved} and the information-theoretic lower bound in this setting.
Abstract:We study $K$-armed bandit problems where the reward distributions of the arms are all supported on the $[0,1]$ interval. It has been a challenge to design regret-efficient randomized exploration algorithms in this setting. Maillard sampling~\cite{maillard13apprentissage}, an attractive alternative to Thompson sampling, has recently been shown to achieve competitive regret guarantees in the sub-Gaussian reward setting~\cite{bian2022maillard} while maintaining closed-form action probabilities, which is useful for offline policy evaluation. In this work, we propose the Kullback-Leibler Maillard Sampling (KL-MS) algorithm, a natural extension of Maillard sampling for achieving KL-style gap-dependent regret bound. We show that KL-MS enjoys the asymptotic optimality when the rewards are Bernoulli and has a worst-case regret bound of the form $O(\sqrt{\mu^*(1-\mu^*) K T \ln K} + K \ln T)$, where $\mu^*$ is the expected reward of the optimal arm, and $T$ is the time horizon length.
Abstract:In sparse linear bandits, a learning agent sequentially selects an action and receive reward feedback, and the reward function depends linearly on a few coordinates of the covariates of the actions. This has applications in many real-world sequential decision making problems. In this paper, we propose a simple and computationally efficient sparse linear estimation method called PopArt that enjoys a tighter $\ell_1$ recovery guarantee compared to Lasso (Tibshirani, 1996) in many problems. Our bound naturally motivates an experimental design criterion that is convex and thus computationally efficient to solve. Based on our novel estimator and design criterion, we derive sparse linear bandit algorithms that enjoy improved regret upper bounds upon the state of the art (Hao et al., 2020), especially w.r.t. the geometry of the given action set. Finally, we prove a matching lower bound for sparse linear bandits in the data-poor regime, which closes the gap between upper and lower bounds in prior work.
Abstract:Imitation learning (IL) is a general learning paradigm for tackling sequential decision-making problems. Interactive imitation learning, where learners can interactively query for expert demonstrations, has been shown to achieve provably superior sample efficiency guarantees compared with its offline counterpart or reinforcement learning. In this work, we study classification-based online imitation learning (abbrev. $\textbf{COIL}$) and the fundamental feasibility to design oracle-efficient regret-minimization algorithms in this setting, with a focus on the general nonrealizable case. We make the following contributions: (1) we show that in the $\textbf{COIL}$ problem, any proper online learning algorithm cannot guarantee a sublinear regret in general; (2) we propose $\textbf{Logger}$, an improper online learning algorithmic framework, that reduces $\textbf{COIL}$ to online linear optimization, by utilizing a new definition of mixed policy class; (3) we design two oracle-efficient algorithms within the $\textbf{Logger}$ framework that enjoy different sample and interaction round complexity tradeoffs, and conduct finite-sample analyses to show their improvements over naive behavior cloning; (4) we show that under the standard complexity-theoretic assumptions, efficient dynamic regret minimization is infeasible in the $\textbf{Logger}$ framework. Our work puts classification-based online imitation learning, an important IL setup, into a firmer foundation.
Abstract:We study the problem of online multi-task learning where the tasks are performed within similar but not necessarily identical multi-armed bandit environments. In particular, we study how a learner can improve its overall performance across multiple related tasks through robust transfer of knowledge. While an upper confidence bound (UCB)-based algorithm has recently been shown to achieve nearly-optimal performance guarantees in a setting where all tasks are solved concurrently, it remains unclear whether Thompson sampling (TS) algorithms, which have superior empirical performance in general, share similar theoretical properties. In this work, we present a TS-type algorithm for a more general online multi-task learning protocol, which extends the concurrent setting. We provide its frequentist analysis and prove that it is also nearly-optimal using a novel concentration inequality for multi-task data aggregation at random stopping times. Finally, we evaluate the algorithm on synthetic data and show that the TS-type algorithm enjoys superior empirical performance in comparison with the UCB-based algorithm and a baseline algorithm that performs TS for each individual task without transfer.
Abstract:The fast spreading adoption of machine learning (ML) by companies across industries poses significant regulatory challenges. One such challenge is scalability: how can regulatory bodies efficiently audit these ML models, ensuring that they are fair? In this paper, we initiate the study of query-based auditing algorithms that can estimate the demographic parity of ML models in a query-efficient manner. We propose an optimal deterministic algorithm, as well as a practical randomized, oracle-efficient algorithm with comparable guarantees. Furthermore, we make inroads into understanding the optimal query complexity of randomized active fairness estimation algorithms. Our first exploration of active fairness estimation aims to put AI governance on firmer theoretical foundations.
Abstract:The growing use of machine learning models in consequential settings has highlighted an important and seemingly irreconcilable tension between transparency and vulnerability to gaming. While this has sparked sizable debate in legal literature, there has been comparatively less technical study of this contention. In this work, we propose a clean-cut formulation of this tension and a way to make the tradeoff between transparency and gaming. We identify the source of gaming as being points close to the \emph{decision boundary} of the model. And we initiate an investigation on how to provide example-based explanations that are expansive and yet consistent with a version space that is sufficiently uncertain with respect to the boundary points' labels. Finally, we furnish our theoretical results with empirical investigations of this tradeoff on real-world datasets.
Abstract:Heart disease is the number one killer, and ECGs can assist in the early diagnosis and prevention of deadly outcomes. Accurate ECG interpretation is critical in detecting heart diseases; however, they are often misinterpreted due to a lack of training or insufficient time spent to detect minute anomalies. Subsequently, researchers turned to machine learning to assist in the analysis. However, existing systems are not as accurate as skilled ECG readers, and black-box approaches to providing diagnosis result in a lack of trust by medical personnel in a given diagnosis. To address these issues, we propose a signal importance mask feedback-based machine learning system that continuously accepts feedback, improves accuracy, and ex-plains the resulting diagnosis. This allows medical personnel to quickly glance at the output and either accept the results, validate the explanation and diagnosis, or quickly correct areas of misinterpretation, giving feedback to the system for improvement. We have tested our system on a publicly available dataset consisting of healthy and disease-indicating samples. We empirically show that our algorithm is better in terms of standard performance measures such as F-score and MacroAUC compared to normal training baseline (without feedback); we also show that our model generates better interpretability maps.