Abstract:We investigate the usage of Large Language Model (LLM) in collecting high-quality data to warm-start Reinforcement Learning (RL) algorithms for learning in some classical Markov Decision Process (MDP) environments. In this work, we focus on using LLM to generate an off-policy dataset that sufficiently covers state-actions visited by optimal policies, then later using an RL algorithm to explore the environment and improve the policy suggested by the LLM. Our algorithm, LORO, can both converge to an optimal policy and have a high sample efficiency thanks to the LLM's good starting policy. On multiple OpenAI Gym environments, such as CartPole and Pendulum, we empirically demonstrate that LORO outperforms baseline algorithms such as pure LLM-based policies, pure RL, and a naive combination of the two, achieving up to $4 \times$ the cumulative rewards of the pure RL baseline.
Abstract:We study a sequential decision problem where the learner faces a sequence of $K$-armed stochastic bandit tasks. The tasks may be designed by an adversary, but the adversary is constrained to choose the optimal arm of each task in a smaller (but unknown) subset of $M$ arms. The task boundaries might be known (the bandit meta-learning setting), or unknown (the non-stationary bandit setting), and the number of tasks $N$ as well as the total number of rounds $T$ are known ($N$ could be unknown in the meta-learning setting). We design an algorithm based on a reduction to bandit submodular maximization, and show that its regret in both settings is smaller than the simple baseline of $\tilde{O}(\sqrt{KNT})$ that can be obtained by using standard algorithms designed for non-stationary bandit problems. For the bandit meta-learning problem with fixed task length $\tau$, we show that the regret of the algorithm is bounded as $\tilde{O}(N\sqrt{M \tau}+N^{2/3})$. Under additional assumptions on the identifiability of the optimal arms in each task, we show a bandit meta-learning algorithm with an improved $\tilde{O}(N\sqrt{M \tau}+N^{1/2})$ regret.