Abstract:Tracking financial investments in climate adaptation is a complex and expertise-intensive task, particularly for Early Warning Systems (EWS), which lack standardized financial reporting across multilateral development banks (MDBs) and funds. To address this challenge, we introduce an LLM-based agentic AI system that integrates contextual retrieval, fine-tuning, and multi-step reasoning to extract relevant financial data, classify investments, and ensure compliance with funding guidelines. Our study focuses on a real-world application: tracking EWS investments in the Climate Risk and Early Warning Systems (CREWS) Fund. We analyze 25 MDB project documents and evaluate multiple AI-driven classification methods, including zero-shot and few-shot learning, fine-tuned transformer-based classifiers, chain-of-thought (CoT) prompting, and an agent-based retrieval-augmented generation (RAG) approach. Our results show that the agent-based RAG approach significantly outperforms other methods, achieving 87\% accuracy, 89\% precision, and 83\% recall. Additionally, we contribute a benchmark dataset and expert-annotated corpus, providing a valuable resource for future research in AI-driven financial tracking and climate finance transparency.
Abstract:Nature is an amorphous concept. Yet, it is essential for the planet's well-being to understand how the economy interacts with it. To address the growing demand for information on corporate nature disclosure, we provide datasets and classifiers to detect nature communication by companies. We ground our approach in the guidelines of the Taskforce on Nature-related Financial Disclosures (TNFD). Particularly, we focus on the specific dimensions of water, forest, and biodiversity. For each dimension, we create an expert-annotated dataset with 2,200 text samples and train classifier models. Furthermore, we show that nature communication is more prevalent in hotspot areas and directly effected industries like agriculture and utilities. Our approach is the first to respond to calls to assess corporate nature communication on a large scale.
Abstract:Large language models (LLMs) have significantly transformed the landscape of artificial intelligence by demonstrating their ability in generating human-like text across diverse topics. However, despite their impressive capabilities, LLMs lack recent information and often employ imprecise language, which can be detrimental in domains where accuracy is crucial, such as climate change. In this study, we make use of recent ideas to harness the potential of LLMs by viewing them as agents that access multiple sources, including databases containing recent and precise information about organizations, institutions, and companies. We demonstrate the effectiveness of our method through a prototype agent that retrieves emission data from ClimateWatch (https://www.climatewatchdata.org/) and leverages general Google search. By integrating these resources with LLMs, our approach overcomes the limitations associated with imprecise language and delivers more reliable and accurate information in the critical domain of climate change. This work paves the way for future advancements in LLMs and their application in domains where precision is of paramount importance.