Abstract:We study the federated pure exploration problem of multi-armed bandits and linear bandits, where $M$ agents cooperatively identify the best arm via communicating with the central server. To enhance the robustness against latency and unavailability of agents that are common in practice, we propose the first federated asynchronous multi-armed bandit and linear bandit algorithms for pure exploration with fixed confidence. Our theoretical analysis shows the proposed algorithms achieve near-optimal sample complexities and efficient communication costs in a fully asynchronous environment. Moreover, experimental results based on synthetic and real-world data empirically elucidate the effectiveness and communication cost-efficiency of the proposed algorithms.
Abstract:We propose the first study of adversarial attacks on online learning to rank. The goal of the adversary is to misguide the online learning to rank algorithm to place the target item on top of the ranking list linear times to time horizon $T$ with a sublinear attack cost. We propose generalized list poisoning attacks that perturb the ranking list presented to the user. This strategy can efficiently attack any no-regret ranker in general stochastic click models. Furthermore, we propose a click poisoning-based strategy named attack-then-quit that can efficiently attack two representative OLTR algorithms for stochastic click models. We theoretically analyze the success and cost upper bound of the two proposed methods. Experimental results based on synthetic and real-world data further validate the effectiveness and cost-efficiency of the proposed attack strategies.