Abstract:The utilization of existing terrestrial infrastructures to provide coverage for aerial users is a potentially low-cost solution. However, the already deployed terrestrial base stations (TBSs) result in weak ground-to-air (G2A) coverage due to the down-tilted antennas. Furthermore, achieving optimal coverage across the entire airspace through antenna adjustment is challenging due to the complex signal coverage requirements in three-dimensional space, especially in the vertical direction. In this paper, we propose a cooperative tri-point (CoTP) model-based method that utilizes cooperative beams to enhance the G2A coverage extension. To utilize existing TBSs for establishing effective cooperation, we prove that the cooperation among three TBSs can ensure G2A coverage with a minimum coverage overlap, and design the CoTP model to analyze the G2A coverage extension. Using the model, a cooperative coverage structure based on Delaunay triangulation is designed to divide triangular prism-shaped subspaces and corresponding TBS cooperation sets. To enable TBSs in the cooperation set to cover different height subspaces while maintaining ground coverage, we design a cooperative beam generation algorithm to maximize the coverage in the triangular prism-shaped airspace. The simulation results and field trials demonstrate that the proposed method can efficiently enhance the G2A coverage extension while guaranteeing ground coverage.
Abstract:The limited energy and computing resources of unmanned aerial vehicles (UAVs) hinder the application of aerial artificial intelligence. The utilization of split inference in UAVs garners significant attention due to its effectiveness in mitigating computing and energy requirements. However, achieving energy-efficient split inference in UAVs remains complex considering of various crucial parameters such as energy level and delay constraints, especially involving multiple tasks. In this paper, we present a two-timescale approach for energy minimization in split inference, where discrete and continuous variables are segregated into two timescales to reduce the size of action space and computational complexity. This segregation enables the utilization of tiny reinforcement learning (TRL) for selecting discrete transmission modes for sequential tasks. Moreover, optimization programming (OP) is embedded between TRL's output and reward function to optimize the continuous transmit power. Specifically, we replace the optimization of transmit power with that of transmission time to decrease the computational complexity of OP since we reveal that energy consumption monotonically decreases with increasing transmission time. The replacement significantly reduces the feasible region and enables a fast solution according to the closed-form expression for optimal transmit power. Simulation results show that the proposed algorithm can achieve a higher probability of successful task completion with lower energy consumption.