Abstract:Deep learning methods based synthetic aperture radar (SAR) image target recognition tasks have been widely studied currently. The existing deep methods are insufficient to perceive and mine the scattering information of SAR images, resulting in performance bottlenecks and poor robustness of the algorithms. To this end, this paper proposes a novel bottom-up scattering information perception network for more interpretable target recognition by constructing the proprietary interpretation network for SAR images. Firstly, the localized scattering perceptron is proposed to replace the backbone feature extractor based on CNN networks to deeply mine the underlying scattering information of the target. Then, an unsupervised scattering part feature extraction model is proposed to robustly characterize the target scattering part information and provide fine-grained target representation. Finally, by aggregating the knowledge of target parts to form the complete target description, the interpretability and discriminative ability of the model is improved. We perform experiments on the FAST-Vehicle dataset and the SAR-ACD dataset to validate the performance of the proposed method.
Abstract:Airports have an important role in both military and civilian domains. The synthetic aperture radar (SAR) based airport detection has received increasing attention in recent years. However, due to the high cost of SAR imaging and annotation process, there is no publicly available SAR dataset for airport detection. As a result, deep learning methods have not been fully used in airport detection tasks. To provide a benchmark for airport detection research in SAR images, this paper introduces a large-scale SAR Airport Dataset (SAD). In order to adequately reflect the demands of real world applications, it contains 624 SAR images from Sentinel 1B and covers 104 airfield instances with different scales, orientations and shapes. The experiments of multiple deep learning approach on this dataset proves its effectiveness. It developing state-of-the-art airport area detection algorithms or other relevant tasks.