Abstract:Buddha statues are a part of human culture, especially of the Asia area, and they have been alongside human civilisation for more than 2,000 years. As history goes by, due to wars, natural disasters, and other reasons, the records that show the built years of Buddha statues went missing, which makes it an immense work for historians to estimate the built years. In this paper, we pursue the idea of building a neural network model that automatically estimates the built years of Buddha statues based only on their face images. Our model uses a loss function that consists of three terms: an MSE loss that provides the basis for built year estimation; a KL divergence-based loss that handles the samples with both an exact built year and a possible range of built years (e.g., dynasty or centuries) estimated by historians; finally a regularisation that utilises both labelled and unlabelled samples based on manifold assumption. By combining those three terms in the training process, we show that our method is able to estimate built years for given images with 37.5 years of a mean absolute error on the test set.
Abstract:The rise of digitization of cultural documents offers large-scale contents, opening the road for development of AI systems in order to preserve, search, and deliver cultural heritage. To organize such cultural content also means to classify them, a task that is very familiar to modern computer science. Contextual information is often the key to structure such real world data, and we propose to use it in form of a knowledge graph. Such a knowledge graph, combined with content analysis, enhances the notion of proximity between artworks so it improves the performances in classification tasks. In this paper, we propose a novel use of a knowledge graph, that is constructed on annotated data and pseudo-labeled data. With label propagation, we boost artwork classification by training a model using a graph convolutional network, relying on the relationships between entities of the knowledge graph. Following a transductive learning framework, our experiments show that relying on a knowledge graph modeling the relations between labeled data and unlabeled data allows to achieve state-of-the-art results on multiple classification tasks on a dataset of paintings, and on a dataset of Buddha statues. Additionally, we show state-of-the-art results for the difficult case of dealing with unbalanced data, with the limitation of disregarding classes with extremely low degrees in the knowledge graph.